Answer:
attached below
Explanation:
a) G(s) = 1 / s( s+2)(s + 4 )
Bode asymptotic magnitude and asymptotic phase plots
attached below
b) G(s) = (s+5)/(s+2)(s+4)
phase angles = tan^-1 w/s , -tan^-1 w/s , tan^-1 w/4
attached below
c) G(s)= (s+3)(s+5)/s(s+2)(s+4)
solution attached below
Answer:
k = 4.21 * 10⁻³(L/(mol.s))
Explanation:
We know that
k = Ae
------------------- euqation (1)
K= rate constant;
A = frequency factor = 4.36 10^11 M⁻¹s⁻¹;
E = activation energy = 93.1kJ/mol;
R= ideal gas constant = 8.314 J/mol.K;
T= temperature = 332 K;
Put values in equation 1.
k = 4.36*10¹¹(M⁻¹s⁻¹)e![^{[(-93.1*10^3)(J/mol)]/[(8.314)(J/mol.K)(332K)}](https://tex.z-dn.net/?f=%5E%7B%5B%28-93.1%2A10%5E3%29%28J%2Fmol%29%5D%2F%5B%288.314%29%28J%2Fmol.K%29%28332K%29%7D)
k = 4.2154 * 10⁻³(M⁻¹s⁻¹)
here M =mol/L
k = 4.21 * 10⁻³((mol/L)⁻¹s⁻¹)
or
k = 4.21 * 10⁻³((L/mol)s⁻¹)
or
k = 4.21 * 10⁻³(L/(mol.s))
Answer:
square cross section. The bar is made of a 7075-T6 aluminum alloy which has a yield strength of 500 MPa, a tensile strength of 575 MPa, and a fracture toughness of 27.5 MPaâm.
Required:
a. What is the nominal maximum tensile stress on the bar?
b. If there were an initial 1.2 mm deep surface crack on the right surface of the bar, what would the critical stress needed to cause instantaneous fast fracture of the bar be?
Answer:d
Explanation:
Given
Temperature
Also 
R=287 J/kg
Flow will be In-compressible when Mach no.<0.32
Mach no.
(a)
Mach no.
Mach no.=0.63
(b)
Mach no.
Mach no.=0.31
(c)
Mach no.
Mach no.=1.27
(d)
Mach no.
Mach no.=0.127
From above results it is clear that for Flow at velocity 200 km/h ,it will be incompressible.