Answer:
(b)False
Explanation:
Given:
Prandtl number(Pr) =1000.
We know that 
Where
is the molecular diffusivity of momentum
is the molecular diffusivity of heat.
Prandtl number(Pr) can also be defined as

Where
is the hydrodynamic boundary layer thickness and
is the thermal boundary layer thickness.
So if Pr>1 then hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.
In given question Pr>1 so hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.
So hydrodynamic layer will be thicker than the thermal boundary layer.
Answer:
mass flow rate = 0.0534 kg/sec
velocity at exit = 29.34 m/sec
Explanation:
From the information given:
Inlet:
Temperature 
Quality 
Outlet:
Temperature 
Quality 
The following data were obtained at saturation properties of R134a at the temperature of -16° C




The LCA process is a systematic, phased approach and consists of four components: goal definition and scoping, inventory analysis, impact assessment, and interpretation. The standards are provided by the International Organisation for Standardisation (ISO) in ISO 14040 and 14044, and describe the four main phases of an LCA: Goal and scope definition. Inventory analysis. Impact assessment.
Hope this is helpful
Answer:
maximum value of the power delivered to the circuit =3.75W
energy delivered to the element = 3750e^{ -IOOOt} - 7000e ^{-2OOOt} -3750
Explanation:
V =75 - 75e-1000t V
l = 50e -IOOOt mA
power = IV = 50 * 10^-3 e -IOOOt * (75 - 75e-1000t)
=50 * 10^-3 e -IOOOt *75 (1 - e-1000t)
=
maximum value of the power delivered to the circuit =3.75W
the total energy delivered to the element = 
