This may help you
<span>You need to use some stoichiometry here. The only way to do that is if you're working in moles. Since you're given grams of Al, you can convert that moles by dividing by the molar mass.
Then from looking at the coefficients in your equation, you can see that for however many moles of Al react, the same numbers of moles of Fe will be produced, but only half as many moles of Al2O3 will be produced.
To go back to grams, multiply the moles of each product that you get by their molar masses!</span>
The question is incomplete.
You need two additional data:
1) the original volume
2) what solution you added to change the volume.
This is a molarity problem, so remember molarity definition and formula:
M = n / V in liters: number of moles per liter of solution
To give you the key to answer this kind of questions, supppose the original volumen was 1 ml and that you added only water (solvent).
The original solution was:
V= 1 ml
M = 0.2 M
Using the formula for molarity, M = n / V
n = M×V = 0.2 M × (1 / 10000)l = 0.0002 moles
For the final solution:
n = 0.0002 moles
M = 0.04
From M = n / V ⇒ V = n / M = 0.002 moles / 0.04 M = 0.05 l
Change to ml ⇒ 0.05 l × 1000 ml / l = 50 ml. This would be the answer for the hypothetical problem that I assumed for you.
I hope this gives you all the cues you need to answer similar problems about molarity.
Answer:
the are coefficients for the atom. the tell how many there are.
Explanation:
they tell you how many atoms there are of its type.
ex. 4 C²H³. there are 4 of the c² and h³ (couldn't find a way to use subscript so used the power signs to show.)