Answer:
Acceleration = 0.0282 m/s^2
Distance = 13.98 * 10^12 m
Explanation:
we will apply the energy theorem
work done = ΔK.E ( change in Kinetic energy ) ---- ( 1 )
<em>where :</em>
work done = p * t
= 15 * 10^6 watts * ( 1 year ) = 473040000 * 10^6 J
( note : convert 1 year to seconds )
and ΔK.E = 1/2 mVf^2 given ; m = 1200 kg and initial V = 0
<u>back to equation 1 </u>
473040000 * 10^6 = 1/2 mv^2
Vf^2 = 2(473040000 * 10^6 ) / 1200
∴ Vf = 887918.92 m/s
<u>i) Determine how fast the rocket is ( acceleration of the rocket )</u>
a = Vf / t
= 887918.92 / ( 1 year )
= 0.0282 m/s^2
<u>ii) determine distance travelled by rocket </u>
Vf^2 - Vi^2 = 2as
Vi = 0
hence ; Vf^2 = 2as
s ( distance ) = Vf^2 / ( 2a )
= ( 887918.92 )^2 / ( 2 * 0.0282 )
= 13.98 * 10^12 m
Answer:<span>Humid air is lighter, so it has lower pressure.
The reason is the molecules of water are H2O, whose molar mass is 18 g/mol.
These molecules displaces molecules of N2 and O2, whose molar masses are:
N2: 2*14g/mol = 28 g/mol, and
O2: 2*16g/mol = 32 g/mol.
Then molecules of 28g/mol and 32 g/mol are being replaced with molecules of 18g/mol, leading to a lower weight of the same volume of air, which results in lower pressure.
</span>
Answer:
the time taken for the motion is 3.37 s
Explanation:
Given;
initial velocity of the skydiver, u = 0
final velocity of the skydiver, v = 33 m/s
The time taken for the motion is calculated as;
v = u + gt
33 = 0 + 9.8t
33 = 9.8t
t = 33 / 9.8
t = 3.37 s
Therefore, the time taken for the motion is 3.37 s
Well, you need no look further than the word "terrestrial" If you notice the beginning of the word you notice that it consists mostly of the word "terra" Terra by definition is just land. Due to the solid land of these 4 planets, they're called terrestrial planets, the other 4 aren't made of land but of gas which is why they aren't classified as terrestrial planets.
Given
Car 1
m1 = 1300 kg
v1 = 20 m/s
m2 = 900 kg
v2 = -15 m/s
(Negative sign shows that direction of car 2 is opposite to car 1)
Procedure
As per the conservation of linear momentum, "The total momentum of the system before the collision must be equal to the total momentum after the collision". And this applies to the perfectly inelastic collision as well. Then the expression is,

Thus, we can conclude that the speed and direction of the cars after the impact is 5.68 m/s towards the first car.