Yes, electron follows the same path when it absorb and loses energy.
Yes, when an electron moves from a higher orbit to a lower orbit it always follow the same path as it moves from a lower orbit to a higher orbit. When electron absorb energy it has the power to move from lower orbit to higher orbit or energy level.
While on the other hand, when an electron loses that energy, it comes back to its original position from which it moves earlier when it absorb energy so we conclude that electron follows the same path when it absorb and loses energy.
Learn more: brainly.com/question/24962163
Answer:
<h3>The answer is 6.93 cm³</h3>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question we have

We have the final answer as
<h3>6.93 cm³</h3>
Hope this helps you
Explanation :
The balanced chemical reaction will be,

By the stiochiometry, 3 moles of solid copper(II)oxide react with 2 moles of ammonia gas to give 3 moles of copper metal, 1 mole of nitrogen gas and 3 moles of liquid water.
The states of matter of each elements and compound is,
Copper(II)oxide is in solid state
Ammonia is in gaseous state
Copper metal is in solid state
Nitrogen is in gaseous state
Water is in liquid state
The neutralization equation is:
3 Ca(OH)₂ + 2 H₃PO₄ → Ca₃(PO₄)₂ + 6 H₂O
From this equation we can see that 3 moles of Ca(OH)₂ react with 2 moles of H₃PO₄
Numbers of mmol of Ca(OH)₂ = M x V = 0.04345 x 54.93 = 2.387 mmol
Number of mmol of H₃PO₄ = 2.387 x (2/3) = 1.591 mmol
Molarity of solution = n (mmol) / V(ml) = 1.591 / 25 = 0.0636 M
Answer:
One way to predict the type of bond that forms between two elements is to compare the electronegativities of the elements. In general, large differences in electronegativity result in ionic bonds, while smaller differences result in covalent bonds. the bonding is covalent bcz its between the most electronegative atom nitrogen and carbon .