False, the radiation from food and medical procedures have very little consequences. The radiation from a nuclear power plant can kill people which makes it a very large problem if not contained properly.
<span />
The pH = 2.41
<h3>Further explanation</h3>
Given
5.0% by mass solution of acetic acid
the density of white vinegar is 1.007 g/cm3
Required
pH
Solution
Molarity of solution :

Ka for acetic acid = 1.8 x 10⁻⁵
[H⁺] for weak acid :
![\tt [H^+]=\sqrt{Ka.M}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D)
Input the value :
![\tt [H^+]=\sqrt{1.8\times 10^{-5}\times 0.839}\\\\(H^+]=0.00388=3.88\times 10^{-3}\\\\pH=3-log~3.88=2.41](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-5%7D%5Ctimes%200.839%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D0.00388%3D3.88%5Ctimes%2010%5E%7B-3%7D%5C%5C%5C%5CpH%3D3-log~3.88%3D2.41)
112.5 g. The production of 50.00 g O2 requires 112.5 g H2O.
a) Write the partially balanced equation for the decomposition of water.
MM = 18.02 32.00
2H2O → O2 + …
Mass/g = 50.00
b) Calculate the <em>moles of O2
</em>
Moles of O2 = 50.00 g O2 × (1 mol O2/16.00 g O2) = 3.1250 mol O2
c) Calculate the <em>moles of water</em>
Moles of H2O = 3.1250 mol O2 × (2 mol H2O/1 mol O2)
= 6.2500 mol H2O
d) Calculate the mass of water
Mass of H2O = 6.2500 mol H2O × (18.02 g H2O/1 mol H2O)
= 112.5 g H2O