Answer:
A) 
B) 
Explanation:
Given:
mass of car, 
A)
frequency of spring oscillation, 
We knkow the formula for spring oscillation frequency:




Now as we know that the springs are in parallel and their stiffness constant gets added up in parallel.
<u>So, the stiffness of each spring is (as they are identical):</u>



B)
given that 4 passengers of mass 70 kg each are in the car, then the oscillation frequency:



Answer:
The conditions necessary for hearing the echo. The distance between the sound source and the reflecting surface must not be less than 17 metres where the time period between hearing the original sound and its echo should not be less than 0.1 of a second.
Answer: when fish is stunning it's prey it's cause electric shock to the prey that's make it die and be able to be utilized by electric eel(fish generate electric surround)
Answer:
9000 J
Explanation:
Convert minutes to seconds.
2 min = 120 s
Power = energy / time
75 W = E / 120 s
E = 9000 J