1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mnenie [13.5K]
3 years ago
5

Air enters a counterflow heat exchanger operating at steady state at 27 C, 0.3 MPa and exits at 12 C. Refrigerant 134a enters at

0.4 MPa, a quality of 0.3, and a mass flow rate of 35 kg/h. Refrigerant exits at 10 C. Stray heat transfer is negligible and there is no significant change in pressure for either stream.(a) For the Refrigerant 134a stream, determine the rate of heat transfer, in kJ/h.(b) For each of the streams, evaluate the change in flow exergy rate, in kJ/h, and interpret its value and sign.Let T0 = 22 C, p0 = 0.1 MPa, and ignore the effects of motion and gravity.

Engineering
1 answer:
Kruka [31]3 years ago
8 0

Answer:

A) 337.21 kj/h

b) -224.823 kj/h

Explanation:

Steady state temperature = 27⁰C

Pressure = 0.3 MPa

exit temperature = 12⁰c

Refrigerant 134a :

entering pressure = 0.4 MPa

mass flow rate = 35 kg/h

quality = 0.3

inlet temp = 8.93⁰c

A) Determine the rate of heat transfer in kJ/h for Refrigerant 134a stream

calculate the specific enthalpy of refrigerant at the inlet

hm = hf + x ( hg - hf )

at 0.4 MPa : hf = 64 kj/kg ,  hg = 256 kj/kg

x = 0.3 ( quality )

hence : hm = 64 + 0.3 ( 256 - 64 ) = 64.3 + 57.6 = 121.9 kj/kg

next calculate the specific enthalpy at outlet

Tout = 10⁰c , T sat = 8.93⁰c

since the Tsat < Tout the refrigerant is super heated and from the super heated refrigerant table at P = 0.4 MPa, hout = 257 kj/kg

Heat gained by refrigerant ( Qin)

Qin = mref ( hout - hin )

      = 35 ( 257 - 112) = 5075 kj/h

To determine the rate of heat transfer we have to apply the equation below

heat gained by refrigerant = heat gained by air

                                     Qin = Qout

                                     5075 kj/h = mair ( hout - hin ) ------------ 1

considering ideal conditions

at T = 300 k ,  hout = 300.19 kj/kg ( specific enthalpy )

at T = 285 k , hin = 285.14 kj/kg   ( specific enthalpy )

back to equation 1

5075 kj/h = mair ( 300.19 - 285.14 )

mair ( rate of energy transfer ) = 5075 / 15.05 = 337.21 kj/h

B) evaluating the change in flow energy rate in kJ/h

attached below is the detailed solution

You might be interested in
What are the two reasons for a clear cut
Inessa [10]

Answer:

to clear land for agriculture and settlement and to use or sell timber for lumber, paper products, or fuel.

3 0
3 years ago
A house that was heated by electric resistance heaters consumed 1500 kWh of electric
gladu [14]

Answer:

2.5=1500/Whp=> Whp=600 kWh

delWgain=1500-600=900 kWh

Money saved= 900* 6tk*=5400 tk

5 0
3 years ago
What might cause a shotgun to explode?
Tanzania [10]

Answer:

When you pull the trigger to shoot a shotshell from a shotgun or a cartridge from a rifle or handgun, the firing pin strikes the primer in the base of the cartridge or shotshell. This causes the primer to explode. The spark from the primer ignites the gunpowder, which burns rapidly and converts to a gas.

Explanation:

3 0
3 years ago
Read 2 more answers
List and explain 4 factors you need to observe while stick welding to make a good “consistent” bead
ch4aika [34]

Answer:I don’t know this one

Explanation:

5 0
3 years ago
What impact does modulus elasticity have on the structural behavior of a mechanical design?
devlian [24]

Answer with Explanation:

The modulus of elasticity has an profound effect on the mechanical design of any machine part as explained below:

1) Effect on the stiffness of the member: The ability of any member of a machine to resist any force depends on the stiffness of the member. For a member with large modulus of elasticity the stiffness is more and hence in cases when the member has to resist a direct load the member with more modulus of elasticity resists the force better.

2)Effect on the deflection of the member: The deflection caused by a force in a member is inversely proportional to the modulus of elasticity of the member thus in machine parts in which we need to resist the deflections caused by the load we can use materials with greater modulus of elasticity.

3) Effect to resistance of shear and torque: Modulus of rigidity of a material is found to be larger if the modulus of elasticity of the material is more hence for a material with larger modulus of elasticity  the resistance it offer's to shear forces and the torques is more.

While designing a machine element since the above factors are important to consider thus we conclude that modulus of elasticity has a profound impact on machine design.

8 0
3 years ago
Other questions:
  • A commuter train traveling at 50 mi/h is 3 mi from a station. The train then decelerates so that its speed is 15 mi/h when it is
    9·1 answer
  • A thick oak wall (rho = 545 kg/m3 , Cp = 2385 J/kgK, and k = 0.17 W/mK) initially at 25°C is suddenly exposed to combustion prod
    11·1 answer
  • What does STP and NTP stands for in temperature measurement?
    15·1 answer
  • true or false incident reports, such as situation reports and status reports enhance situational awareness and ensure that perso
    12·1 answer
  • Engineers design for everyone and consider all design challenges opportunities to problem-solve. The roller coaster in this phot
    5·1 answer
  • FREEEEEE POOIIIINTS RIGHT HERE EVERYONE LEVEL UPPPP​
    13·2 answers
  • I need solution fast plesss​
    9·1 answer
  • Find all the words, Figure out my puzzle!
    14·2 answers
  • In order to avoid a rollover, what is the highest degree incline one should mow on? 10-degree incline 5-degree incline 30-degree
    15·1 answer
  • What are the main causes of injuries when using forklifts?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!