Rinse Bacon in Water Before Cooking to Reduce Shrinkage by 50 Percent. This sounds like a bizarre thing to do, but we're talking about less bacon shrinkage! Rinse your… At the end of the day, the best way to keep your bacon from shrinking when cooking is to cook it low and slow in the oven.
Answer:
Moreover, Boss says that even if Jupiter is proven to have a core, the planet still could have formed that core through disk instability. Enough dust could have collected and cemented together in the dense gas to form a core many times larger than the size of the Earth.
Explanation:
The same is true of most other objects in the solar system — except Jupiter. The gas giant is so big that it pulls the center of mass between it and the sun, also known as the barycenter, some 1.07 solar radii from the star's center — which is about 30,000 miles above the sun's surface.
69,911 km
69,911 kmJupiter/Radius
Answer:
0.139 rad
Explanation:
We use Snell's law
, where if
is the <em>refractive index</em> of the medium containing the <em>incident ray</em>,
would be the <em>incident angle</em>, and if
is the <em>refractive index</em> of the medium containing the <em>refracted ray</em>,
would be the <em>refraction angle</em>, which we want, so we do:

And finally:

We then insert our values:

Answer:
<h2> 4kg</h2>
Explanation:
Step one:
given
length of rod=2m
mass of object 1 m1=1kg
let the unknown mass be x
center of mass<em> c.m</em>= 1.6m
hence 1kg is 1.6m from the <em>c.m</em>
and x is 0.4m from the <em>c.m</em>
Taking moment about the <em>c.m</em>
<em>clockwise moment equals anticlockwise moments</em>
1*1.6=x*0.4
1.6=0.4x
divide both sides by 0.4 we have
x=1.6/0.4
x=4kg
The mass of the other object is 4kg
Answer:
The least uncertainty in the momentum component px is 1 × 10⁻²³ kg.m.s⁻¹.
Explanation:
According to Heisenberg's uncertainty principle, the uncertainty in the position of an electron (σx) and the uncertainty in its linear momentum (σpx) are complementary variables and are related through the following expression.
σx . σpx ≥ h/4π
where,
h is the Planck´s constant
If σx = 5 × 10⁻¹²m,
5 × 10⁻¹²m . σpx ≥ 6.63 × 10⁻³⁴ kg.m².s⁻¹/4π
σpx ≥ 1 × 10⁻²³ kg.m.s⁻¹