Answer : The correct option is, (3) change states of matter.
Explanation :
Latent heat : It is defined as the heat required to convert the solid into liquid or vapor and a liquid into a vapor without changing the temperature.
There are two types of latent heat.
(1) Latent heat of fusion
(2) Latent heat of vaporization
Latent heat of fusion : It is defined as the amount of heat energy released or absorbed when the solid converted to liquid at atmospheric pressure at its melting point.
Latent heat of vaporization : It is defined as the amount of heat energy released or absorbed when the liquid converted to vapor at atmospheric pressure at its boiling point.
Hence, latent heat is used to change states of matter.
It’s appearance
It’s physical form
What it feels like
How hot it gets
If it melts
Shape
Color
Answer:
0.42 M
Explanation:
The reaction that takes place is:
- Cu(CH₃COO)₂ + Na₂CrO₄ → Cu(CrO₄) + 2Na(CH₃COO)
First we <u>calculate the moles of Na₂CrO₄</u>, using the <em>given volume and concentration</em>:
(200 mL = 0.200L)
- 0.70 M * 0.200 L = 0.14 moles Na₂CrO₄
Now we <u>calculate the moles of Cu(CH₃COO)₂</u>, using its <em>molar mass</em>:
- 40.8 g ÷ 181.63 g/mol = 0.224 mol Cu(CH₃COO)₂
Because the molar ratio of Cu(CH₃COO)₂ and Na₂CrO₄ is 1:1, we can directly <u>substract the reacting moles of Na₂CrO₄ from the added moles of Cu(CH₃COO)₂</u>:
- 0.224 mol - 0.14 mol = 0.085 mol
Finally we <u>calculate the resulting molarity</u> of Cu⁺², from the <em>excess </em>cations remaining:
- 0.085 mol / 0.200 L = 0.42 M
Answer:
Photosynthetic bacteria must take in <u>Carbon Dioxide</u> to live, and they release <u>Oxygen </u> . Animals must take <u>Oxygen </u> to live, and they release <u>Carbon Dioxide.</u>
Explanation:
Photosynthesis:
It is the process in which in the presence of sun light and chlorophyll by using carbon dioxide and water plants produce the oxygen and glucose.
Carbon dioxide + water + energy → glucose + oxygen
water is supplied through the roots, carbon dioxide collected through stomata and sun light is capture by chloroplast.
Chemical equation:
6H₂O + 6CO₂ + energy → C₆H₁₂O₆ + 6O₂
Photosynthetic bacteria perform same function as plants. These bacteria contain light harvesting pigments absorb carbon dioxide and release oxygen.
While animals take oxygen and release carbon dioxide to live. This respiration process is opposite to the photosynthesis.
Glucose + oxygen → carbon dioxide + water + 38ATP