Given Information:
Radius = r = 0.5 m
Magnetic field = 1.0 T
Required Information:
Period = T = ?
Speed = v = ?
Kinetic energy = KE = ?
Answer:
Period = 0.13x10⁻⁶ seconds
speed = 24.16x10⁶ m/s
Kinetic energy = 12.11 MeV
Explanation:
(a) period
The time period of alpha particle is related to its orbital speed as
T = 2πr/v eq. 1
According to newton's law
F = ma
Force due to magnetic field is given by
F = qvB
qvB = ma
qvB = m(v²/r)
qB = mv/r
v = qBr/m eq. 2
substitute the eq. 2 in eq. 1
T = 2πr/qBr/m
r cancels out
T = 2π/qB/m
T = 2πm/qB
T = 2π*6.65x10⁻²⁷/2*1.602x10⁻¹⁹*1
T = 0.13x10⁻⁶ seconds
(b) speed
From equation 1
T = 2πr/v
v = 2πr/T
v = 2π*0.5/0.13x10⁻⁶
v = 24.16x10⁶ m/s
(c) kinetic energy (in electron volts)
Kinetic energy is given by
KE = 0.5mv²
KE = 0.5*6.65x10⁻²⁷*(24.16x10⁶)²
KE = 1.94x10⁻¹² J
since 1 electron volt has 1.602x10⁻¹⁹ J
KE = 1.94x10⁻¹²/1.602x10⁻¹⁹
KE = 12.11 MeV
Answer:
<h3>The answer is 0.54 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>0.54 g/cm³</h3>
Hope this helps you
D)
<span>No. the products include He-4, one neutron, and energy.</span>
Answer:
Explanation:
a ) speed of passenger = circumference / time
= 2π R / Time
= 2 x 3.14 x 50 / 60
= 5.23 m /s
b )
centrifugal force = m v² /R
= (882 /9.8 ) x 5.23² / 50
= 77.47 N
Apparent weight at the highest point
real weight - centrifugal force
= 882 - 77.47
= 804.53 N
Apparent weight at the lowest point
real weight + centrifugal force
= 882 +77.47
= 959.47 N
c ) if the passenger’s apparent weight at the highest point were zero
centrifugal force = weight
mv² /R = mg
v² = gR
= 9.8 X 50
v = 22.13 m /s
d )
apparent weight
mg - mv² / R
= 882 - (882 / 9.8 )x 22.13²/50
= 882 + 882
= 1764 N
=
<h2>

</h2>
<u>Air pressure has no effect at all in an ideal gas approximation. This is because pressure and density both contribute to sound velocity equally, and in an ideal gas the two effects cancel out, leaving only the effect of temperature. Sound usually travels more slowly with greater altitude, due to reduced temperature.</u>