Answer: D
Explanation:
Kinetic energy = 1/2mV^2
From the formula above, we can deduce that kinetic energy is proportional to the square of speed. That is,
K.E = V^2
Graphically, the relationship isn't linear but a positive exponential. Therefore, option D is the correct answer.
Answer:
A, 30V
Explanation:
First combine all resistors to an equivalent resistor. Since they are in series, the equivalent resistance is the sum of all resistor
Req = 20 + 40 + 60 = 120Ω
Using Ohm's law, find the current in the circuit
V = I * R
I = V / R
I = 60V / 120Ω
I = 0.5 A
Now the potential drop across the resistor R3 is the current times R3 resistance, therefore:
Vdrop = 0.5A * 60Ω = 30V
So the potential drop across resistor R3 is 30 V
Kinematic question!
Start with your knowns!

we want to find x!
the only kineamtic that works with this info is the third!

so we plug in our values and get

this'll equal out to -159.2 meters.
our units equal out, so we know our answer is correct!
By definition <span>Projectile motion is a form of motion in which an object or particle i.e. called a projectile is thrown near the Earth's surface, and it moves along a curved path under the action of gravity only</span>
Answer:
Explanation:
Mass of car (M)=1200kg
Initial velocity (u)=20m/s
Stop after time (t)=3sec.
Come to stop implies that the final velocity is zero, v=0m/s
Using newton second law of motion
F=m(v-u)/t
Ft=m(v-u)
Since impulse is Ft
I=Ft
Then, I=Ft=m(v-u)
I=m(v-u)
I=1200(0-20)
I=1200×-20
I=-24,000Ns
The impulse delivered to the car by static friction is -24,000Ns