The french revolution led to many deaths and impacted history because of the amount of life lost
The volcanic ashes from the volcano
First, balance the reaction:
_ KClO₃ ==> _ KCl + _ O₂
As is, there are 3 O's on the left and 2 O's on the right, so there needs to be a 2:3 ratio of KClO₃ to O₂. Then there are 2 K's and 2 Cl's among the reactants, so we have a 1:1 ratio of KClO₃ to KCl :
2 KClO₃ ==> 2 KCl + 3 O₂
Since we start with a known quantity of O₂, let's divide each coefficient by 3.
2/3 KClO₃ ==> 2/3 KCl + O₂
Next, look up the molar masses of each element involved:
• K: 39.0983 g/mol
• Cl: 35.453 g/mol
• O: 15.999 g/mol
Convert 10 g of O₂ to moles:
(10 g) / (31.998 g/mol) ≈ 0.31252 mol
The balanced reaction shows that we need 2/3 mol KClO₃ for every mole of O₂. So to produce 10 g of O₂, we need
(2/3 (mol KClO₃)/(mol O₂)) × (0.31252 mol O₂) ≈ 0.20835 mol KClO₃
KClO₃ has a total molar mass of about 122.549 g/mol. Then the reaction requires a mass of
(0.20835 mol) × (122.549 g/mol) ≈ 25.532 g
of KClO₃.
Answer:
Energy = 1.38*10^13 J/mol
Explanation:
Total number of proton in F-19 = 9
Total number of neutron in F-19 = 10
Expected Mass of F-19
= 9*1.007 + 10*1.008 = 19.152 u
Actual mass of F-19 = 18.998 u
Energy of one particle of F-19 = 931.5*Δm = 931.5*(19.152-18.998)
= 143.234 MeV
Energy of one mole of F-19 = 143.234*10^6*1.6*10^-19*6.022*10^23
= 1.38*10^13 J/mol