1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nydimaria [60]
3 years ago
13

After a storm, a hospital may have to rely on backup generators to power some equipment. Which is the energy conversion provided

by the generators?
A. mechanical to electrical energy

B. thermal to mechanical energy

C. nuclear to mechanical energy

D. thermal to electric energy
Physics
1 answer:
IceJOKER [234]3 years ago
7 0

Answer:

in a generator mechanical energy is a device that converts a form of energy into electricty

You might be interested in
Which of the following is true about a planet orbiting a star in uniform circular motion? A. The direction of the velocity vecto
Luda [366]
<span>As it is uniform circular motion therefore speed is constant. Therefore we can rule out option B. Also in circular motion the direction of velocity vector changes therefore velocity can't be constant. Therefore option B is incorrect as well. Also centripetal acceleration is always towards the center so option D is wrong as well. That implies option A is correct.</span>
4 0
3 years ago
Read 2 more answers
A stationary police car emits a sound of frequency 1240 HzHz that bounces off of a car on the highway and returns with a frequen
Tju [1.3M]

Answer

given,

frequency from Police car= 1240 Hz

frequency of sound after return  = 1275 Hz

Calculating the speed of the car = ?

Using Doppler's effect formula

Frequency received by the other car

  f_1 = \dfrac{f_0(u + v)}{u}..........(1)

u is the speed of sound = 340 m/s

v is the speed of the car

Frequency of the police car received

  f_2= \dfrac{f_1(u)}{u-v}

now, inserting the value of equation (1)

  f_2= f_0\dfrac{u+v}{u-v}

  1275=1240\times \dfrac{340+v}{340-v}

  1.02822(340 - v) = 340 + v

   2.02822 v = 340 x 0.028822

   2.02822 v = 9.799

   v = 4.83 m/s

hence, the speed of the car is equal to v = 4.83 m/s

5 0
3 years ago
Imagine you are on the top of a mountain with four basketballs. The mass of the four basketballs are 100 kilograms, 200 kilogram
pentagon [3]

Answer:

400 kilogram

Explanation:

Force exerted is directly proportional to the mass of an object.

F=ma where m is mass and a is acceleration. Taking uniform acceleration on all objects then the larger the mass the higher the force and vice versa. Theredore, among the masses given, 400 kilograms is the largest hence it exerts the largest force at the bottom

5 0
3 years ago
The intensity of light from a star (its brightness) is the power it outputs divided by the surface area over which it’s spread:
kow [346]

Answer:

\frac{d_{1}}{d_{2}}=0.36

Explanation:

1. We can find the temperature of each star using the Wien's Law. This law is given by:

\lambda_{max}=\frac{b}{T}=\frac{2.9x10^{-3}[mK]}{T[K]} (1)

So, the temperature of the first and the second star will be:

T_{1}=3866.7 K

T_{2}=6444.4 K

Now the relation between the absolute luminosity and apparent brightness  is given:

L=l\cdot 4\pi r^{2} (2)

Where:

  • L is the absolute luminosity
  • l is the apparent brightness
  • r is the distance from us in light years

Now, we know that two stars have the same apparent brightness, in other words l₁ = l₂

If we use the equation (2) we have:

\frac{L_{1}}{4\pi r_{1}^2}=\frac{L_{2}}{4\pi r_{2}^2}

So the relative distance between both stars will be:

\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{L_{1}}{L_{2}} (3)

The Boltzmann Law says, L=A\sigma T^{4} (4)

  • σ is the Boltzmann constant
  • A is the area
  • T is the temperature
  • L is the absolute luminosity

Let's put (4) in (3) for each star.

\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{A_{1}\sigma T_{1}^{4}}{A_{2}\sigma T_{2}^{4}}

As we know both stars have the same size we can canceled out the areas.

\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{T_{1}^{4}}{T_{2}^{4}}

\frac{d_{1}}{d_{2}}=\sqrt{\frac{T_{1}^{4}}{T_{2}^{4}}}

\frac{d_{1}}{d_{2}}=\sqrt{\frac{T_{1}^{4}}{T_{2}^{4}}}

\frac{d_{1}}{d_{2}}=0.36

I hope it helps!

5 0
3 years ago
Jordana pulled a muscle while running at a track meet. Her coach gave her a self-heating pack to treat the injury. The instructi
pochemuha

Answer:

Chemical

Explanation:

6 0
3 years ago
Other questions:
  • You raise a bucket of water from the bottom of a well that is 12 m deep. the mass of the bucket and the water is 5.00 kg, and it
    8·1 answer
  • (a) What is the energy stored in the 10.0 μF capacitor of a heart defibrillator charged to 9.00×103V ? (b) Find the amount of st
    10·1 answer
  • Whose geocentric model was accepted for 1400 years
    13·1 answer
  • Which of the following statements about asteroids is true? A. The asteroids in our solar system are spread out uniformly and are
    7·2 answers
  • How much force does it take to accelerate a 50.8 kg person at 3.50 m/s^2?
    13·1 answer
  • Can someone please help me in physical science
    6·1 answer
  • When steam condenses
    5·2 answers
  • Jill is pushing a box across the floor. Which represents the upward force perpendicular to the floor?
    9·1 answer
  • What is the mass of a 50 kg person on earth?
    9·1 answer
  • Help!!!!!!!!!!!!!!!!!​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!