Explanation:
For this problem we have to take into account the expression
J = I/area = I/(π*r^(2))
By taking I we have
I = π*r^(2)*J
(a)
For Ja = J0r/R the current is not constant in the wire. Hence

and on the surface the current is

(b)
For Jb = J0(1 - r/R)

and on the surface

(c)
Ja maximizes the current density near the wire's surface
Additional point
The total current in the wire is obtained by integrating

and in a simmilar way for Jb
![I_{T}=\pi J_{0} \int\limits^R_0 {r^{2}(1-r/R)} \, dr = \pi J_{0}[\frac{R^{3}}{3}-\frac{R^{2}}{2R}]=\pi J_{0}[\frac{R^{3}}{3}-\frac{R^{2}}{2}]](https://tex.z-dn.net/?f=I_%7BT%7D%3D%5Cpi%20J_%7B0%7D%20%5Cint%5Climits%5ER_0%20%7Br%5E%7B2%7D%281-r%2FR%29%7D%20%5C%2C%20dr%20%3D%20%5Cpi%20%20%20J_%7B0%7D%5B%5Cfrac%7BR%5E%7B3%7D%7D%7B3%7D-%5Cfrac%7BR%5E%7B2%7D%7D%7B2R%7D%5D%3D%5Cpi%20J_%7B0%7D%5B%5Cfrac%7BR%5E%7B3%7D%7D%7B3%7D-%5Cfrac%7BR%5E%7B2%7D%7D%7B2%7D%5D)
And it is only necessary to replace J0 and R.
I hope this is useful for you
regards
Answer:
The principle of superposition which is also called superposition property,states that when two or more waves of the same type cross at some point, the resultant displacement at that point is equal to the sum of the displacements due to each individual wave.
Explanation:
I’m guessing b because hydrogen is in your room and maybe eliminate to o but it also can be D
my final is: B!
Answer:
circular motion
In surface waves, particles of the medium undergo a circular motion. They are neither longitudinal nor transverse, for in longitudinal and transverse waves, all the particles in the entire bulk of the medium move in a parallel and a perpendicular direction, respectively, relative to the direction of energy transport.
Explanation:
Hope this helps