Answer:

Explanation:
Given that,
The compression in the spring, x = 0.0647 m
Speed of the object, v = 2.08 m/s
To find,
Angular frequency of the object.
Solution,
We know that the elation between the amplitude and the angular frequency in SHM is given by :

A is the amplitude
In case of spring the compression in the spring is equal to its amplitude



So, the angular frequency of the spring is 32.14 rad/s.
Answer:
The one in the middle
Explanation: i listened to the other person and i got it wrong, this is the answer for edge2020 sience review on energy!!!!
trust me its the middle one!!!!!
And everyone if ur not sure, like 100% sure about an answer dont answer at all cuz for 1: ur taking up a spot for others to answer. for 2: you could make people wrong. And for 3: its annoying. And 4: it makes stuff like this happen!
<u>NOT ARGUEING IM JUST PUTTING MY THOUGHTS AND OPINIONS OUT THERE ;)</u><em> many thanks.</em>
Answer:
10.6cm
Explanation:
We are given 5.3cm below the starting point (spring extension).
Therefore, to find static vertical equilibrium, we use the equation:
kx = mg
Where:
k = spring constant =
=mg/5.3 kg/s²
We are told the object was dropped from rest.
Therefore:
loss in potential energy = gain in spring p.e
Let's use the expression:
mgx = ½kx²
We are asked to find the stretch at maximum elongation x.
To find x, we make x subject of the formula.
Therefore, we have:
x = 2mg/k (after rearranging the equation above)
x = (2mg) / (mg/5.3)
x = 10.6cm
Answer:
3WGGRGWERGRG
Explanation:
GERAGAETGAERR GHERUERHGRRGF;SBDF;JKSRDMFNSDFLDGGD;GDVF
Answer:
Metals, nonmetals and metalloids.
Explanation: