Answer:
0.42°
Explanation:
Using Snell's law of refraction which states that the ratio of the angle of sin of incidence to angle of sine of refraction is equal to a constant for a given pair of media. Mathematically,
Sin(i)/sin(r) = n
n is the refractive index of the medium
FOR VIOLET LIGHT:
n = 2.46
i = 51°
r = ?
To get r, we will use the Snell's law formula.
2.46 = sin51°/sinr
Sinr = sin51°/2.46
Sinr = 0.316
r = sin^-1(0.316)
rv = 18.42°
FOR RED LIGHT:
n = 2.41
i = 51°
r = ?
To get r, we will use the Snell's law formula.
2.41 = sin51°/sinr
Sinr = sin51°/2.41
Sinr = 0.323
r = sin^-1(0.323)
rd = 18.84°
The angular separation between these two colors of light in the refracted ray will be the difference between there angle of refraction.
Angular separation = rd - rv
= 18.84° - 18.42°
= 0.42°
In series.
Single-pole and single-throw switch:
A switch with only one input and one output is referred to as a Single Pole Single Throw (SPST) switch. This indicates that it has a single output terminal and a single input terminal.
A single pole, one throw switch functions as an on/off switch in circuits. The circuit is turned on when the switch is closed. The circuit is shut off when the switch is open.
Thus, SPST switches are relatively basic in design.
Circuit for a single-pole, single-throw (SPST) switch
Types:
According to the application, it can be divided into three categories, including:
- (ON)-OFF, Push-to-close, SPST Momentary
- ON-(OFF), Push-to-Open, SPST Momentary
Learn more about terminal here:
brainly.com/question/14236970
#SPJ4
Answer:
D
Explanation:
The friction force is the weight force times the coefficient of friction. So diving by the coefficient gives you the weight force which is equivalent to the normal force.
The linear speed of the ladybug is 4.1 m/s
Explanation:
First of all, we need to find the angular speed of the lady bug. This is given by:

where
T is the period of revolution
The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:
T = 1 s
Therefore, the angular speed is

Now we can find the linear speed of the ladybug, which is given by

where:
is the angular speed
r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation
Substituting, we find

Learn more about angular speed:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly
Answer:
the force of the friction is A-0.52