The answer to this question would be: Because the increase of temperature will increase volume.
Using PV=nRT formula we can see that temperature increase will cause an increase in volume. Overheating will cause the volume increase, then increasing the volume. If the percent value used is based on the volume, it will seem that the water is increased. But if the percent is using mass, there will be no increases.
That is why sometimes scientists using molality in a reaction with high temperature changes.
Answer:
Your coefficients (the numbers in front of the molecule) will be the following from left to right.
1. <u>1 - 2 - 1 - 2</u>
2. <u>2 - 1 - 2 - 2 - 1</u>
3. <u>2 - 4 - 1</u>
4. <u>2 - 4 - 3</u>
5. <u>2 - 2 - 2 - 1</u>
6. <u>1 - 1 - 1</u>
7. <u>2 - 1 - 2</u>
8. <u>3 - 1 - 2 - 3</u>
9. <u>3 - 1 - 2 - 3</u>
10. <u>2 - 1 - 1 - 1</u>
Explanation:
To balance this equations first count how many times an element is on each side and then see what needs to be changed in order to balance them.
Make 2 in 102 as the power of 10
10^2 = 100
101 - 10^2 = 101 - 100 = 1
Hope it helped:)
You must burn 1.17 g C to obtain 2.21 L CO₂ at STP.
The balanced chemical equation is
C + O₂ → CO₂.
<em>Step 1</em>. Convert <em>litres of CO₂ to moles of CO₂</em>.
STP is <em>0 °C and 1 bar</em>. At STP the volume of 1 mol of an ideal gas is 22.71 L.
Moles of CO₂ = 2.21 L CO₂ × (1 mol CO₂/22.71 L CO₂) = 0.097 31 mol CO₂
<em>Step 2</em>. Use the molar ratio of C:CO₂ to <em>convert moles of CO₂ to moles of C
</em>
Moles of C = 0.097 31mol CO₂ × (1 mol C/1 mol CO₂) = 0.097 31mol C
<em>Step 3</em>. Use the molar mass of C to <em>calculate the mass of C
</em>
Mass of C = 0.097 31mol C × (12.01 g C/1 mol C) = 1.17 g C
It looks as if you are using the <em>old (pre-1982) definition</em> of STP. That definition gives a value of 1.18 g C.