Answer:
Explanation:
Mass of F / Mass of S = 2.962/1 =2.962 X 32 / 32 = 94.78/32
Mass of F / Mass of S = 2.370 /1 = 2.370 X 32 / 32 = 75.84 /32
Mass of F /Mass of S = 3.555/1 = 3.555 x 32 / 32 = 113.76 / 32 .
Now constant mass of S that is 32 g reacts with different mass of F. They are as follows :
94.78 g , 75.84 g , and 113.76 g
Their ratio = 94.78 : 75.84 : 113.76
divide them by 19
their ratio = 5 : 4 : 6
So these data are consistent with law of multiple proportion.
Answer is: 3,3 mol of <span>nitrous oxide gas is produced in this chemical reaction.
</span>Chemical reaction: N₂ + O₂ → 2NO.
n(N₂) = 1,65 mol.
n(NO) = ?
from reaction n(N₂) : n(NO) = 1 : 2.
1,65 mol : n(NO) = 1 : 2.
n(NO) = 3,3 mol.
n - amount of substance.
Answer is: because alkaline metals (group IA metals) are the strongest reducing agents and most reactive metals.
Reducing agent<span> is an element or compound that loses an </span>electron<span> to another </span>chemical species<span> in a </span>redox <span>chemical reaction and they have been oxidized.
Alkaline metals tend to lose only one electron in redox reaction.</span>
Answer:
See explanation
Explanation:
When we talk about electrophilic substitution, we are talking about a substitution reaction in which the attacking agent is an electrophile. The electrophile attacks an electron rich area of a compound during the reaction.
The five membered furan ring is aromatic just as benzene. This aromatic structure is maintained during electrophilic substitution reaction. The attack of the electrophile generates a resonance stabilized intermediate whose canonical structures have been shown in the image attached.