They do the method 3 times to be sure. Because if you do it once, that could mean anything. If you do it twice, it may or may not have the same result. If you do it 3 times and it matches one of the previous answers, then it's likely that it's correct.
"<span>All waves have frequency, wavelength, speed and amplitude." </span>
<span>Answer: A) They are isotopes of nitrogen and they contain the same number of protons and electrons but each contains a different number of neutrons - 7 and 8 respectively.
Isotopes are atoms of a chemical element whose nucleus has the same atomic number, Z, but different atomic mass, A. The atomic number corresponds to the number of protons in the atom, therefore the isotopes of an element contain the same number of protons and electrons (atoms have to be neutral particles). The difference in atomic masses arises from the difference in the number of neutrons in the atomic nucleus.
</span>
Answer:
Momentum of system = 37.2 Kgm/s.
Explanation:
<u>Given the following data;</u>
- Mass A = 5 kg
- Velocity A = 6 m/s
- Mass B = 12 kg
- Velocity B = 0.6 m/s
To find the momentum of the system;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
Momentum = mass * velocity
<u>For object A;</u>
Momentum A = 5 * 6
Momentum A = 30 Kgm/s
<u>For object B;</u>
Momentum B = 12 * 0.6
Momentum B = 7.2 Kgm/s
Next, we would determine the momentum of this system using the formula;
Momentum of system = Momentum A + Momentum B
Substituting the values into the formula, we have;
Momentum of system = 30 + 7.2
<em>Momentum of system = 37.2 Kgm/s.</em>