1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vichka [17]
3 years ago
6

An airplane propeller is rotating at 2000 rev/min.

Physics
1 answer:
Fudgin [204]3 years ago
6 0

A 1 complete revolution corresponds to an angular displacement of 2π rad, or 360º. (So there are 180º for every π rad.) Also, there are 60 seconds to 1 minute. So, the angular velocity in rad/s is

(2000 rev/min) * (2π rad/rev) * (1/60 min/s) = 200π/3 rad/s

or approximately 209.44 rad/s.

B First convert the angular velocity to degrees per second (º/s):

(200π/3 rad/s) * (180/π º/rad) = 12,000 º/s

We want to find the time <em>t</em> it would take for the propeller to turn 36º:

36º = (12,000 º/s) <em>t</em>

==>  <em>t</em> = 36º / (12,000 º/s) = 3/1000 s

or approximately 0.003 s.

You might be interested in
a man can swim in still water with speed of 2kmhr-1 wants to cross a river 200m wide flowing with 1kmhr-1 . Calculate the time t
tangare [24]

Answer:

d savage

Explanation:

3 0
3 years ago
What is the mechanical advantage of the screw shown below? O A. 14.1 O B. 2 O C. 12.6 O D. 8.2.​
Vilka [71]

Answer: C. 12.6

Explanation: 2*pi*1.8= 11.304

11.304/0.9= 12.56

3 0
2 years ago
NEED ANSWER ASAP!!! Angela has a bucket of mass 2 kg tied to a string. She places a drinking glass of mass 0.5 kg in the bucket.
Schach [20]

a. The free-body diagram for the glass when it is at the top of the circle is attached below.

b. The equation for the net force on the glass at the top of the circle in terms of w, Fn, m, v, and r is mg x g + N -  mg x Vtop² /R =0

c. The glass will fall out of the bucket if the normal force between the glass and bucket equals zero. The speed with which she spin the bucket to prevent this from happening is 3.83 m/s.

d. The string will break if the tension on it is more than 100 N. The range of speeds can  prevent the string from breaking is 3.83< Vtop<4.99 m/s

<h3>What is Net force?</h3>

When two or more forces are acting on the system of objects, then the to attain equilibrium, net force must be zero.

Given, Angela has a bucket of mass 2 kg tied to a string. She places a drinking glass of mass 0.5 kg in the bucket. She spins the bucket in a vertical circle of radius 1.5 m. She must swing the bucket to keep the glass from falling out.

a. The free body diagram of the bucket and glass is attached below.

b. Bucket will undergo centrifugal force

Fb = mVtop² /R

From the equilibrium of forces, we have

For bucket,

T +mb xg - N =  mb x Vtop² /R..............(1)

For glass,

mg x g + N =  mg x Vtop² /R..............(2)

Thus, this is the net force equation on the glass.

c. On adding both the equations. we have

T + (mb + mg) xg = (mb + mg) Vtop² /R

Substituting the values, T = 0 and from the question, we get

0 + (2+0.5) 9.81 = (2+0.5)(Vtop²/0.5)

Vtop = 3.83 m/s

Thus, the speed of spin to prevent glass from falling out is 3.83 m/s

d. The string will break if the tension on it is more than 100 N

100 + (2+0.5) 9.81 = (2+0.5)(Vtop²/0.5)

Vtop = 4.99 m/s

Thus, the range of velocity is  3.83< Vtop<4.99 m/s

Learn more about net force.

brainly.com/question/18031889

#SPJ1

8 0
2 years ago
A sound source is moving at 80 m/s toward a stationary listener that is standing in still air (a) Find the wavelength of the sou
Setler [38]

Answer:

a. wavelength of the sound, \vartheta = 1.315\vartheta_{o}

b. observed frequecy, \lambda = 0.7604\lambda_{o}

Given:

speed of sound source, v_{s} = 80 m/s

speed of sound in air or vacuum, v_{a} = 343 m/s

speed of sound observed, v_{o} = 0 m/s

Solution:

From the relation:

v = \vartheta \lambda        (1)

where

v = velocity of sound

\vartheta = observed frequency of sound

\lambda = wavelength

(a) The wavelength of the sound between source and the listener is given by:

\lambda = \frac{v_{a}}{\vartheta }         (2)

(b) The observed frequency is given by:

\vartheta = \frac{v_{a}}{v_{a} - v_{s}}\vartheta_{o}

\vartheta = \frac{334}{334 - 80}\vartheta_{o}

\vartheta = 1.315\vartheta_{o}                (3)

Using eqn (2) and (3):

\lambda = \frac{334}{1.315} = \frac{1}{1.315}\frac{v_{a}}{\vartheta_{o}}

\lambda = 0.7604\lambda_{o}

4 0
3 years ago
A 3kg object has an initial velocity (6i - 2j) m/s (a ) what is its kinetic energy at this time? (b) Find total work done on the
guapka [62]

Answer:

K.E =  \frac{1}{2} m {v}^{2}  \\  {v}^{2}_i  =  {v}^{2} _x + {v}^{2} _y \\  =  {(6)}^{2}  +  {( - 2)}^{2}  = 36 + 4 = 40m. {s}^{ - 1} \\ K.E_i =  \frac{1}{2} (3) (40) = 60J \\  \\ {v}^{2}_f  =  {v}^{2} _x + {v}^{2} _y \\  =  {(8)}^{2}  +  {(4)}^{2}  = 80m. {s}^{ - 1} \\ K.E_i =  \frac{1}{2} (3) (80) = 120J \\ W_{net}=K.E_f-K.E_i \\  = 120J - 60J \\  = 60J

3 0
3 years ago
Other questions:
  • What does the octect rule state that explains why atoms bond ?
    9·1 answer
  • A 2.0-kg object is lifted vertically through 3.00 m by a 150-N force. How much work is done on the object by gravity during this
    9·2 answers
  • How can you make the moon go around in a bigger circle
    5·2 answers
  • If the architectural plans show the rough opening of a window to be 3'-3" x 4'-9" , the height of the opening should actually me
    7·1 answer
  • State the reason why wick lamps are made of cotton
    12·1 answer
  • Waves can transfer energy through
    8·1 answer
  • You observe a car traveling 40 km/s southeast. you observed the cars what?
    5·1 answer
  • Help! I don’t really know what it’s asking
    7·1 answer
  • Unit Test Review
    11·1 answer
  • How does light behaves when light passes through water?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!