Answer:
Change in specific internal Energy
Explanation:
Given:
- Mass of the gas, m=0.4 lb
- Initial pressure and volume are

- Final pressure and temperature are

- Heat transfer from the gas is 2.1 Btu
Since the process is isotropic we have

So the final volume of the gas is calculated.
Work in any isotropic is given by w

According to the first law of thermodynamics we have

So the Specific Internal Change is given by

So the specific Change in Internal energy is calculated.
- According to Newton's Third Law of Motion, to every action, there is an equal and opposite reaction; action and reaction act on different bodies.
- Here, the action force is in the leftward direction, so the reaction will be in the opposite direction.
- If the action force is the swimmer pushing water in the leftward direction, then the reaction force is in the rightward direction.
- And the reaction force will be given by the water on the swimmer.
<u>Answer</u><u>:</u>
<u>The </u><u>reaction </u><u>force </u><u>is </u><u>the </u><u>water </u><u>pushing </u><u>the </u><u>swimmer </u><u>in </u><u>the </u><u>rightward </u><u>direction</u><u>.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
<u>Answer</u>
The combined displacement is 2km north
<u>Explanation</u>
Since displacement is a vector quantity, we take into account the direction.
Good for us all the displacement vectors are in the same dimension, so we can make north positive and south negative or vice-versa.
We now add to obtain,

This will simplify to

Therefore the combined displacement is 2km north
Answer:
The answer to your question: d.
Explanation:
a. The rate of change of momentum of an object is equal to the net force applied to the object.
This is the second a law of motion, so this answer is incorrect.
b. In the absence of a net force acting on it, an object moves with constant velocity.
This is the first Newton law of motion, so this option is not correct.
c. For any force, there always is an equal and opposite reaction force.
This is the third law of motion, so this is not the right option.
d. What goes up must come down.
Newton said this sentence, but is not part of the law of motion.
The molar mass of ammonium sulphate [(NH4)2SO4] is 132.17 g (option E). Details about molar mass can be found below.
<h3>How to calculate molar mass?</h3>
The molar mass of a substance can be calculated by adding the atomic masses of the elements in the compound.
According to this question, the atomic mass of nitrogen is given as 14.01, hydrogen is 1.01, sulfur is 32.07, and oxygen is 16.00.
The molar mass of ammonium sulphate is as follows:
[(NH4)2SO4] = [14.01 + 1(4)]2 + 32.07 + 16.00(4)
= 36.02 + 32.07 + 64
= 132.09
Therefore, the molar mass of ammonium sulphate [(NH4)2SO4] is 132.17 g.
Learn more about molar mass at: brainly.com/question/12127540
#SPJ1