Answer:
Stars are very massive stellar objects, which means that they have a very intense force of gravity. This is the first of the forces entering this "war".
In addition to that, due to the force of gravity that drives the star to contract, the process known as fusion occurs (the union of atoms of one element that results in another element, hydrogen fuses in stars to produce helium). The fusion created in the high temperatures of the center of the star generates an enormous amount of energy (which causes the stars to shine) and a force going outward of the star counteracting gravity, this is the second force in the "war" .
In a stable star these two forces (gravity going inward and the pressure created by the fusion going outward ) are in balance, preventing the star from exploding or collapsing. But eventually the star exhausts its "fuel" (hydrogen atoms) to produce fusion within it (although stars also fuse helium and other heavier elements, but once the hydrogen is finished the star is near its end), which decreases the force outward from the star, making the force that wins this battle to be the force of gravity.
When the force of gravity wins, the star collapses on itself and from here, depending on the star's mass, several things can happen, such as the star becoming a white dwarf, a supernova, even a black hole.
Answer:
The answer to this question is given below in this explanation section.
Explanation:
" law of conservation of energy"
The law of conservation of energy states that energy can neither be created nor destroyed only converted from one form of energy into another.This mean that a system always has a same account of a energy,unless it is added from the outside.This is particularly confusing in the case of non conversation forces,where energy is converted from ,mechanical energy into thermal energy.but the overall energy does remain the same.The only way to use energy is to transform energy from one form to another.
The amount of energy in any system than it is determined by the following equation.
Ut=Ui +W+Q
- Ut is the total internal energy of a system.
- Ui is the initial internal energy of a system.
- W is the work done by or on the system.
- Q is the heat added to or removed by the system.
It is also possible to determined the change in internal energy of the system using the equation.
ΔU=W+Q
The mechanical energy of a system increases provided their is no loss of energy due to friction.The energy would transform to kinetic energy when the speed is increasing.Te mechanical energy of a system remain constant provided their is no loss of energy due to friction.
The law of conversation of energy which say that in a closed system total energy is conserved that is it constant.
KE1 + PE1=KE2+PE2
Answer:
d = 1.55 * 10⁻⁶ m
Explanation:
To calculate the distance between the adjacent grooves of the CD, use the formula,
..........(1)
The fringe number, m = 1 since it is a first order maximum
The wavelength of the green laser pointer,
= 532 nm = 532 * 10⁻⁹ m
Distance between the central maximum and the first order maximum = 1.1 m
Distance between the screen and the CD = 3 m
= Angle between the incident light and the diffracted light
From the setup shown in the attachment, it is a right angled triangle in which


Putting all appropriate values into equation (1)

Answer:
An object can have a displacement in the absence of any external force acting on it
Explanation:
When a object moves with a constant velocity (v), then it gets displaced in the direction of motion but the net external force experienced by the object is zero.
F external =ma
If object moves with constant velocity, acceleration is zero.
Since, a=0 ⟹F external =0
Using s=ut+ 1/2 at ^2
⟹ Displacement s=ut (∵a=0)
Hence, an object can have a displacement in the absence of any external force acting on it
Hope this helped you:)
Answer:
(a)

(b) 

Explanation:
Let us take the north direction to be the positive y-axis and the east to be positive x-axis.
First day:
25.0 km southeast, which implies
south of east. The y-component will be negative and the x-component will be positive.


Second day:
She starts off at the stopping point of last day. This time, both the y- and x-components are positive.


Therefore, total displacements:


Magnitude of displacements,

Direction,
