A. Occluded
Explanation- At an occluded front, the cold air mass from the cold front meets the cool air that was ahead of the warm front.
The Professor's centripetal acceleration is 0.044 m/s²
Centripetal acceleration is the acceleration of an object moving in circular motion. It is usually directed towards the center of the rotation.
It is given by:
a = v²/r
where v is the velocity and r is the radius.
Given that the radius (r) = 4 m, velocity (v) = 0.419 m/s, hence:
a = v²/r = 0.419²/4 = 0.044 m/s²
The Professor's centripetal acceleration is 0.044 m/s²
Find out more at: brainly.com/question/6082363
To solve this problem it is necessary to apply the continuity equations in the fluid and the kinematic equation for the description of the displacement, velocity and acceleration.
By definition the movement of the Fluid under the terms of Speed, acceleration and displacement is,

Where,
Velocity in each state
g= Gravity
h = Height
Our values are given as,



Replacing at the kinetic equation to find
we have,



Applying the concepts of continuity,

We need to find A_2 then,

So the cross sectional area of the water stream at a point 0.11 m below the faucet is



Therefore the cross-sectional area of the water stream at a point 0.11 m below the faucet is 
true or false: a image created by an object located inside the focal point is virtual, enlarged, and upright
True :D
Answer: 211.059 m
Explanation:
We have the following data:
The angle at which the ball leaves the bat
The initial velocity of the ball
The acceleration due gravity
We need to find how far (horizontally) the ball travels in the air: 
Firstly we need to know this velocity has two components:
<u>Horizontally:</u>
(1)
(2)
<u>Vertically:</u>
(3)
(4)
On the other hand, when we talk about parabolic movement (as in this situation) the ball reaches its maximum height just in the middle of this parabola, when
and the time
is half the time it takes the complete parabolic path.
So, if we use the following equation, we will find
:
(5)
Isolating
:
(6)
(7)
(8)
Now that we have the time it takes to the ball to travel half of is path, we can find the total time
it takes the complete parabolic path, which is twice
:
(9)
With this result in mind, we can finally calculate how far the ball travels in the air:
(10)
Substituting (2) and (9) in (10):
(11)
Finally: