I think this is learned in chemistry do you have any notes that can help
Answer:
Negligible
Explanation:
According to the kinetic theory of gases, the degree of intermolecular interaction between gases is minimal and gas molecules tend to spread out and fill up the volume of the container.
If the attraction between gas molecules increases, then the volume of the gas decreases accordingly. This is because, gas molecules become highly attracted to each other.
This intermolecular attractive force may be so strong, such that the actual volume of the gas become negligible compared to the volume of the container.
Answer:
New volume is 14.35 mL
Explanation:
When a system of a gas keeps on constant its temperature and number of moles, the pressure is modified indirectly proportional to the volume:
Pressure increased → Volume decreased
Pressure decreased → Volume increased.
The relation you have to apply is: P₁ . V₁ = P₂. V₂
1.23 atm . 35 mL = 3 atm . V₂
(1.23 atm . 35 mL / 3 atm) = V₂
V₂ = 14.35 mL
Answer:
120g Using Density Equation.
Explanation:
Density =mass/volume
We need to the solve for the mass.
Mass=Density * Volume
Mass= 2.40 g/ml * 50.0 ml = 120g
Answer:
We need 10.14 grams of sodium bromide to make a 0.730 M solution
Explanation:
Step 1: Data given
Molarity of the sodium bromide (NaBr) = 0.730 M
Volume of the sodium bromide solution = 135 mL = 0.135 L
Molar mass sodium bromide (NaBr) = 102.89 g/mol
Step 2: Calculate moles NaBr
Moles NaBr = Molarity NaBr * volume NaBr
Moles NaBr = 0.730 M * 0.135 L
Moles NaBr = 0.09855 moles
Step 3: Calculate mass of NaBr
Mass NaBr = 0.09855 moles * 102.89 g/mol
Mass NaBr = 10.14 grams
We need 10.14 grams of sodium bromide to make a 0.730 M solution