In order for a solute to dissolve in a solvent,
the attractive forces between solute particles and the solvent particles must
be stronger than the attractive forces between solute-solute and
solvent-solvent particles. This is important so that the solute will remain in
solution.
Heat would be required : 1,670 J
<h3>Further explanation</h3>
Given
mass of H₂O=5 g
Required
Heat to melt
Solution
The heat to change the phase can be formulated :
Q = m.Lf (melting/freezing)
Lf=latent heat of fusion
The heat of fusion for water at 0 °C : 334 J/g
Input given values in formula :

Answer:
Explanation:
Water is called the universal solvent. It is a polar molecule (105 degree angle between the H atoms) that gives it a + and a - side so to speak....which allows it to 'pull apart' substances....overcome their intra-molecular attractions to each other ...i.e. disssovle them
Missing question:
<span>(1) C2H5OH (3) C12H22O11
(2) C6H12O6 (4) CH3COOH.
Answer is: 4) CH</span>₃COOH, acetic acid.
In water, acetic acid dissociates on ions, so it can conduct electricity:
CH₃COOH(aq) ⇄ CH₃COO⁻(aq) + H⁺(aq).
When we put
electrodes (cathode and anode) in acetic acid solution, positive and negative
ions migrate to electrodes.<span>
Negative acetate ions go to positive electrode
and gives electrons to electrode.
<span>Positive hydrogen ions go to negative electrode
and gain electrons.</span></span>
Answer: The correct option is Current W flows at a higher rate than Current Z.
Explanation: To answer this question, we will require Ohm's law.
Ohm's Law states that the current flowing through a conductor across two points is directly proportional to the voltage difference across that two points.
Mathematically,

where, V = voltage
I = Current
R = resistance
For the given question, assuming that the resistance is constant. So, the current is directly proportional to the voltage.

Hence, as the current W is greater of all the given currents so, it will flow at a higher rate.
Therefore, the correct answer is Current W flows at a higher rate than Current Z.