Hi there!
On a level road:
∑F = Ff (Force due to friction)
The net force is the centripetal force, so:
mv²/r = Ff
Rewrite the force due to friction:
mv²/r = μmg
Cancel out the mass:
v²/r = μg
Solve for v:
v = √rμg
v = √(25)(9.81)(0.8) = 14.01 m/s
The one word you're looking for to fill in the blank
can be "uneven" or "non-uniform".
Answer:
(a) 0.204 Weber
(b) 0.22 Volt
Explanation:
N = 100, radius, r = 10 cm = 0.1 m, B = 0.0650 T, angle is 90 degree with the plane of coil, so theta = 0 degree with the normal of coil.
(a) Magnetic flux, Ф = N x B x A
Ф = 100 x 0.0650 x 3.14 x 0.1 0.1
Ф = 0.204 Weber
(b) B1 = 0.0650 T, B2 = 0.1 T, dt = 0.5 s
dB / dt = (B2 - B1) / dt = (0.1 - 0.0650) / 0.5 = 0.07 T / s
induced emf, e = N dФ/dt
e = N x A x dB/dt
e = 100 x 3.14 x 0.1 x 0.1 x 0.07 = 0.22 V
Answer : The partial pressure of
is, 67.009 atm
Solution : Given,
Partial pressure of
at equilibrium = 30.6 atm
Partial pressure of
at equilibrium = 13.9 atm
Equilibrium constant = 
The given balanced equilibrium reaction is,

The expression of
will be,

Now put all the values of partial pressure, we get


Therefore, the partial pressure of
is, 67.009 atm