Explanation:
a) HNO2(aq) = HNO3(aq) + H2O(l) +NO(g)
b) SoCl2 (l) + H2O (l) = So2(g) + 2HCl(aq)
c) CH4 (g) + 2O2(g) = Co2 (g) + 2H2O(g)
d) 3CuO(s) + 2NH3 (g) = 3Cu(s) + 3H2O (l) + N2(g)
I assume what you're asking about is, how does the temperature changes when we increase water's mass, according the formula for heat ?
Well the formula is :

(where Q is heat, m is mass, c is specific heat and

is change in temperature. So according this formula, increasing mass will increase the substance's heat, but won't effect it's temperature since they are not related. Unless, if you want to keep the substance's heat constant, in that case when you increase it's mass you will have to decrease the temperature
Answer: Temperature
Explanation: Temperature is a measure of average kinetic energy of particles in an object. The hotter the substance, higher is the average kinetic energy of its constituent particles. When we heat a substance, the particles that constitute the substance gain some energy and begin to move faster.
Both figures are mixtures,
Figure II is a heterogenous mixture
Figure I is a homogenous mixture
Answer:
d. Enzymes are broken down by the reactions they catalyze.
Explanation: