Its is true that light from an unshaded bulb radiates in all directions
We are going to use this equation:
ΔT = - i m Kf
when m is the molality of a solution
i = 2
and ΔT is the change in melting point = T2- 0 °C
and Kf is cryoscopic constant = 1.86C/m
now we need to calculate the molality so we have to get the moles of NaCl first:
moles of NaCl = mass / molar mass
= 3.5 g / 58.44
= 0.0599 moles
when the density of water = 1 g / mL and the volume =230 L
∴ the mass of water = 1 g * 230 mL = 230 g = 0.23Kg
now we can get the molality = moles NaCl / Kg water
=0.0599moles/0.23Kg
= 0.26 m
∴T2-0 = - 2 * 0.26 *1.86
∴T2 = -0.967 °C
Given,
P1 = 0.98 atm
V1 = 0.5 L
V2 = 1.0 L
P2 = ?
Solution,
According to Boyle's Law,
P1V1 = P2V2
0.98 × 0.5 = 1.0 × P2
P2 = 0.98 × 0.5 × 1.0
P2 = 0.49 atm
Answer - The new pressure is 0.49 atm.
<span>C4H10 + 6.5 O2 ----> 4CO2 + 5H2O
2C4H10 + 13 O2 ----> 8CO2 + 10H2O
1. Count the C on the left (4), put a 4 where the C on the right.
2. Count the H on the left (1), you have two on the right, so you multimply this two by 5. Put the 5 in front of the H2O
3. Count the O on the right. You have 4*2 + 5 = 13. You have two on the left, so you need 6.5 on the left.
4. Now multiply everything on the equation by two so you have nice integer numbers.
5. check you have the same amount of everything on each side.
Example C: left 8, right 8, etc.
I hope this helps. :)</span><span>
</span>
It means that <span>the cell loses most of its water from osmosis when put in a hypertonic.
Hope that helps!</span>