The answer is it shifts right. This could be explained by Le
Chatelier's principle. It states that that when a system experiences a commotion
(such as absorption, temperature, or heaviness variations), it will answer to reinstate
a new equilibrium state. This just means that if there is an energy added, the
reaction is trying to remove it again by going to the right.
Answer:
Explanation:
(a) Firstly, caesium abd potassium are both in Group 1 of the periodic table. Group 1 metals (also called alkali metals) are the most reactive metals of the periodic table. Caesium is more reactive than Potassium because it has a higher electropositivity than Potassium. Electropositivity is the tendency of a metal to donate electron(s) to form a cation. Electropositivity increases down the group; this is because it is easier for atoms to loose electrons on the outermost shell that are far away from the central nucleus as against atoms whose outermost electrons are closer to the central nucleus. <u>Thus, the more "bulky" an atom is, the farther it's outermost electrons (valence electrons) get from the central nucleus and the easier it is to lose the outermost electron(s). And the easier it is for the valence electron(s) to be removed, the more reactive the atom would be and vice-versa.</u>
Caesium is more reactive than potassium because it is more bulky than potassium, with an atomic number of 55, while potassium has an atomic number of 19.
NOTE: The closer an electron is to the nucleus, the more difficult it is to be removed from it's shell.
(b) i. Formula for Caesium Nitrate:
Symbol for Caesium is Cs and Nitrate is NO₃⁻.
Cs⁺ + NO₃⁻ ↔ CsNO₃
Formula for Caesium Nitrate is CsNO₃
ii. Formula for Caesium sulphate
Symbol for caesium is Cs and Sulphate is SO₄²⁻
Cs⁺ + SO₄²⁻ ↔ Cs₂SO₄
Formula for Caesium sulphate is Cs₂SO₄
NOTE: When writing the formulae, the charges would be exchanged to form the subscript as seen on the product sides above.
Answer:
904.8 kg / m3
Explanation:
19.0 kg/0.021 m^3 = 904.761905 kg / m3
Answer:
Explanation:
This question asks us to find the temperature change given a volume change. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula is:
The volume of the gas starts at 250 milliliters and the temperature is 137 °C.
The volume of the gas is increased to 425 milliliters, but the temperature is unknown.
We are solving for the new temperature, so we must isolate the variable T₂. First, cross multiply. Multiply the first numerator and second denominator, then multiply the first denominator and second numerator.
Now the variable is being multiplied by 250 milliliters. The inverse of multiplication is division. Divide both sides of the equation by 250 mL.
The units of milliliters (mL) cancel.
The temperature changes to <u>232.9 degrees Celsius.</u>
Answer:
HF
H₂S
H₂CO₃
NH₄⁺
Explanation:
<em>Which acid in each of the following pairs has the stronger conjugate base?</em>
According to Bronsted-Lowry acid-base theory, <em>the weaker an acid, the stronger its conjugate acid</em>. Especially for weak acids, pKa gives information about the strength of such acid. <em>The higher the pKa, the weaker the acid.</em>
<em />
- Of the acids HCl or HF, the one with the stronger conjugate base is HF because it is a weak acid.
- Of the acids H₂S or HNO₂, the one with the stronger conjugate base is H₂S because it is a weaker acid. pKa (H₂S) = 7.04 > pKa (HNO₂) = 3.39
- Of the acids H₂CO₃ or HClO₄, the one with the stronger conjugate base is H₂CO₃ because it is a weak acid.
- Of the acids HF or NH₄⁺, the one with the stronger conjugate base is NH₄⁺ because it is a weaker acid. pKa (HF) = 3.17 < pKa (NH₄⁺) = 9.25