I think the correct answer choice is c
Answer:
18.5 m/s
Explanation:
On a horizontal curve, the frictional force provides the centripetal force that keeps the car in circular motion:

where
is the coefficient of static friction between the tires and the road
m is the mass of the car
g is the gravitational acceleration
v is the speed of the car
r is the radius of the curve
Re-arranging the equation,

And by substituting the data of the problem, we find the speed at which the car begins to skid:

Answer:
Explanation:
Given
Initial speed is u=V
Maximum height of Pebble is H
Deriving maximum height of Pebble and considering motion in vertical direction

where v=final velocity
u=initial velocity
a=acceleration
s=Displacement
Final velocity will be zero at maximum height


i.e. maximum height is dependent on square of initial velocity
for twice the height

on comparing
Is that a question? If it is not what its the question?
Answers:
a) 
b) 
Explanation:
a) Since we are told the satellites circle the space station at constant speed, we can assume they follow a uniform circular motion and their tangential speeds
are given by:
(1)
Where:
is the angular frequency
is the radius of the orbit of each satellite
is the period of the orbit of each satellite
Isolating
:
(2)
Applying this equation to each satellite:
(3)
(4)
(5)
(6)
(7)
(8)
Ordering this periods from largest to smallest:

b) Acceleration
is defined as the variation of velocity in time:
(9)
Applying this equation to each satellite:
(10)
(11)
(12)
(13)
(14)
(15)
Ordering this acceerations from largest to smallest:
