Solubility of a gas in a liquid is directly proportional to the partial pressure of the gas present above the liquid and is inversely proportional to the temperature.
So, the solubility of <u>gas </u>in water decreases as the temperature increases.
The molecular formula of a compound is C₂H₂O₄.
Take 100 grams of compound:
1) ω(C) = 26.7% ÷ 100% = 0.267
m(C) = ω(C) × m(compound)
m(C) = 0.267 × 100 g.
m(C) = 26.7 g.
n(C) = m(C) ÷ M(C).
n(C) = 26.7 g ÷ 12 g/mol.
n(C) = 2.22 mol; amount of carbon
2) ω(H) = 2.2 % ÷ 100% = 0.022
m(H) = 0.022 × 100 g.
m(H) = 2.2 g.
n(H) = 2.2 g ÷ 1 g/mol.
n(H) = 2.2 mol; amount of hydrogen
3) ω(O) = 71.1 % ÷ 100%.
ω(O) = 0.711
m(O) = 0.711 × 100 g
m(O) = 71.1 g
n(O) = 71.1 g ÷ 16 g/mol
n(O) = 4.4 mol; amount of oxygen
4) n(C) : n(H) : n(O) = 2.2 mol : 2.2 mol : 4.4 mol /2.2 mol.
n(C) : n(H) : n(O) = 1 : 1 : 2
M(CHO₂) = 45 amu; empirical formula
90 amu ÷ 45 amu = 2 CHO₂
More info about empirical formula: brainly.com/question/1873039
#SPJ4
Answer is: <span>the volume of water after the solid is added</span> is 4.5 ml.
d(gold) = 8.0 g/cm³; density of gold.
m(gold) = 4 g; mass of gold.
V(gold) = m(gold) ÷ d(gold); volume of gold.
V(gold) = 4 g ÷ 8 g/cm³.
V(gold) = 0.5 cm³ = 0.5 ml.
V(water) = 4.00 ml = 4.00 cm³.
V(flask) = V(gold) + V(water).
V(flask) = 0.5 cm³ + 4 cm³.V = 4.5 cm³.
Answer:
-0.050 kJ/mol.K
Explanation:
- A certain reaction is thermodynamically favored at temperatures below 400. K, that is, ΔG° < 0 below 400. K
- The reaction is not favored at temperatures above 400. K, that is. ΔG° > 0 above 400. K
All in all, ΔG° = 0 at 400. K.
We can find ΔS° using the following expression.
ΔG° = ΔH° - T.ΔS°
0 = -20 kJ/mol - 400. K .ΔS°
ΔS° = -0.050 kJ/mol.K
Answer:B) Going Down
Explanation:
The higher the concentration of hydro in ions in a solution, the more acidic it is, and the lower the pH is.
(I just answered the question on USA TP!)