Answer:
hey mate
answer is probably voltage as per me
as
Explanation:
Voltage, electric potential difference, electric pressure or electric tension is the difference in electric potential between two points, which is defined as the work needed per unit of charge to move a test charge between the two points
Answer:
Angular velocity is same as frequency of oscillation in this case.
ω =
x ![[\frac{L^{2}}{mK}]^{3/14}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BL%5E%7B2%7D%7D%7BmK%7D%5D%5E%7B3%2F14%7D)
Explanation:
- write the equation F(r) = -K
with angular momentum <em>L</em>
- Get the necessary centripetal acceleration with radius r₀ and make r₀ the subject.
- Write the energy of the orbit in relative to r = 0, and solve for "E".
- Find the second derivative of effective potential to calculate the frequency of small radial oscillations. This is the effective spring constant.
- Solve for effective potential
- ω =
x ![[\frac{L^{2}}{mK}]^{3/14}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BL%5E%7B2%7D%7D%7BmK%7D%5D%5E%7B3%2F14%7D)
Answer:
As much I know the gravity on moon is 1.62m/s२.
Answer:
your question in not complete.
you need to the high too.
Answer:
2.32 s
Explanation:
Using the equation of motion,
s = ut+g't²/2............................ Equation 1
Where s = distance, u = initial velocity, g' = acceleration due to gravity of the moon, t = time.
Note: Since Onur drops the basket ball from a height, u = 0 m/s
Then,
s = g't²/2
make t the subject of the equation,
t = √(2s/g')...................... Equation 2
Given: s = 10 m, g' = 3.7 m/s²
Substitute this value into equation 2
t = √(2×10/3.7)
t = √(20/3.7)
t = √(5.405)
t = 2.32 s.