The answer is 232 plus 450
C. Aluminum (Al) oxidized, zinc (Zn) reduced
<h3>Further explanation</h3>
Given
Metals that undergo oxidation and reduction
Required
A galvanic cell
Solution
The condition for voltaic cells is that they can react spontaneously, indicated by a positive cell potential.

or:
E ° cell = E ° reduction-E ° oxidation
For the reaction to occur spontaneously (so that it E cell is positive), the E° anode must be less than the E°cathode
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The standard potential value(E°) from left to right in the voltaic series will be greater, so that the metal undergoing an oxidation reaction (acting as an anode) must be located to the left of the reduced metal (as a cathode)
<em />
From the available answer choices, oxidized Al (anode) and reduced Zn (cathode) are voltaic/galvanic cells.
2H2(g) + O2(g) → 2H2O(1) 0 260 g 0.2068 0.180 g 2008
When 45.0 g of CH4 reacts with excess O2, the actual yield of CO2 is 118 g. What is the percent yield? CHA(g) + 2O2(g) - CO2(g) + 2H2O(g) 73.6% 67.9% 95.2% 86.4%
For the reaction: 2503(g) + 790 kcal - 25(s) + 3O2(g), how many kcal are needed to form 1.5 moles O2(g)? 790 kcal 395 kcal 2370 kcal 411 kcal
When 3 moles of Ny are mixed with 5 moles of H2 the limiting reactant is N2(g) + 3H2(g) - 2NH3(g) H2 NH3 ОООО H20 O N₂
Here is the answer for the three of them
<span>N20 = 16 e-
</span><span>SeCl2 =20
</span><span>PBr3 = 26
Remember that t</span><span>o find the valence electrons in an atom you need to identify what group the element is in. An element in group 1A has 1 valence electron. If the element is in group 2A, then it has two valence electrons.</span>