<span>it fairly is going to attain a speed of 24 m/s in a 2d, yet between t = 0 and t = a million, it fairly is not any longer vacationing at that speed, yet at slower speeds. it fairly is 12 meters. ?D = [ ( a?T^2 + 2?Tv_i ) ] / 2 the place: ?D = displacement a = acceleration ?T = elapsed time v_i = preliminary speed ?D = [ ( 24m/s^2 • 1s • 1s + 2 • 1s • 0m/s ) ] / 2 ?D = 24 / 2 ?D = 12m</span>
The force of attraction between 2 charged spheres can be explained by Coulomb's law,
It states the force of attraction is directly proportional to the magnitudes of the charges and inversely proportional to the square of the distance between the charges.
/

where F - force of attraction/repulsion
q₁ and q₂ - charges of the 2 spheres
k - Coulomb's law constant
r - distance between the spheres
In the question given, the charges of the spheres remain constant in both instances, only distance changes. Therefore (kq₁q₂) = c which is a constant
then F = c / r²
first instance
6 x 10⁻⁹ N = c/ (20 cm)² ---1)
F = c/(10 cm)² --- 2)
2) / 1)

F = 6 x 10⁻⁹ x 4
F = 2.4 x 10⁻⁸ N
Answer:
Explanation:
First we calculate the energy of the photon
E=(Planck constant × speed of light in vacuum)÷ wave length
E=
Next we find the total energy per second
total energy= 
Next we calculate the number the photon per second
= total energy ÷ energy of 1 photon
= 
Particle kinetic energy and particle speed