Increasing its velocity will add to the kinetic energy more as the formula for kinetic energy is 0.5*m*v^2. (The speed will be squared making it greater)
Answer:
T₂ = 20.06 ° C
Explanation:
Given
P = 90 kg, T₁ = 20 ° C, h = 30 m, c = 1.82 kJ / Kg * ° C
Using the formula to determine the final temperature of the water
T₂ = T₁ * P * h / Eₐ * c
The work done of the person to the water
Eₐ = 1000 kg / m³ * 5 m³ * 9.8 m / s²
Eₐ = 49000 N
T₂ = 20 ° C +[ (90 kg * 30m) / (49000 N * 1.82) ]
T₂ = 20.06 ° C
Answer:
Explanation:
When the spring is compressed by .80 m , restoring force by spring on block
= 130 x .80
= 104 N , acting away from wall
External force = 82 N , acting towards wall
Force of friction acting towards wall = μmg
= .4 x 4 x 9.8
= 15.68 N
Net force away from wall
= 104 -15.68 - 82
= 6.32 N
Acceleration
= 6.32 / 4
= 1.58 m / s²
It will be away from wall
Energy released by compressed spring = 1/2 k x²
= .5 x 130 x .8²
= 41.6 J
Energy lost in friction
= μmg x .8
= .4 x 4 x 9.8 x .8
= 12.544 J
Energy available to block
= 41.6 - 12.544 J
= 29 J
Kinetic energy of block = 29
1/2 x 4 x v² = 29
v = 3.8 m / s
This will b speed of block as soon as spring relaxes. (x = 0 )
Answer:
The result of force distributed over an area – Pressure = Force(in Newton's – N)/area (m 2 ) Pascal (Pa) – SI unit for Pressure – Named after.
I hope it help you,
<h3>Follow me for more answer.</h3>
I got it keep it bucks worth u this it tooooo muchhhhhhh