1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
poizon [28]
3 years ago
10

The alignment readings for the front of a vehicle are shown above. Camber and toe are within specification, caster is not. Techn

ician A says that with the current settings, the left front tire tread may wear on the inside edge. Technician B says that with the current settings, the vehicle may pull to the left. Who is right? A. A only B. B only C. Both A and B D. Neither A nor B
Engineering
1 answer:
dlinn [17]3 years ago
4 0

Answer:

B. B only

Given Information:

1. Camber and toe are within specification

2. Caster is not within specification

Technician A says that with the current settings, the left front tire tread may wear on the inside edge.

Technician B says that with the current settings, the vehicle may pull to the left

Explanation:

Lets discuss the effects of Camber, toe and caster misalignment

Effects of Camber and Toe misalignment:

Camber is the inward or outward tilt of the fron tires and is used to distribute load across the tread. Any misalignment causes uneven loading on the tires which results in tire wear on one edge.

The most common cause of tire wear on the inside edge is due to the camber misalignment which results in premature tire wear.

Another reason is of tire wear is vehicle’s toe. A slight misalignment of the toe reduces the life of the tire.

Since it is given that camber settings and toe settings are within specification therefore, tire tread wear on the inside edge cannot happen if camber and toe are within specification.

Technician A cannot be right.

Effects of Caster misalignment:

Whenever there is a misalignment of the castor then the vehicle will not be able to go in straight line rather it will pull to either left or right side. Caster misalignment also causes heavy or light steering depending upon the positive or negative misalignment of caster.

Since it is given that caster settings are not within specification therefore, the vehicle may pull to the left due to the caster misalignment.

Technician B must be right.

You might be interested in
. In order to prevent injury from inflating air bags, it is recommended that vehicle occupants sit at least __________ inches aw
scZoUnD [109]
10 inches is the answer
8 0
2 years ago
Read 2 more answers
A cylinder with a frictionless piston contains 0.05 m3 of air at 60kPa. The linear spring holding the piston is in tension. The
AleksAgata [21]

Answer:

18 kJ

Explanation:

Given:

Initial volume of air = 0.05 m³

Initial pressure = 60 kPa

Final volume = 0.2 m³

Final pressure = 180 kPa

Now,

the Work done by air will be calculated as:

Work Done = Average pressure × Change in volume

thus,

Average pressure = \frac{60+180}{2}  = 120 kPa

and,

Change in volume = Final volume - Initial Volume = 0.2 - 0.05 = 0.15 m³

Therefore,

the work done = 120 × 0.15 = 18 kJ

4 0
3 years ago
A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane-strain fracture tough
jeyben [28]

Complete question:

A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane strain fracture toughness of 98.9 MPa root m (90 ksi root in.) and a yield strength of 860 MPa (125,000 psi). The flaw size resolution limit of the flaw detection apparatus is 3.0 mm (0.12 in.). If the design stress is one-half of the yield strength and the value of Y is 1.0, determine whether or not a critical flaw for this plate is subject to detection.

Answer:

Since the flaw 17mm is greater than 3 mm the critical flaw for this plate is subject to detection

so that critical flow is subject to detection  

Explanation:

We are given:

Plane strain fracture toughness K = 98.9 MPa \sqrt{m}

Yield strength Y = 860 MPa

Flaw detection apparatus = 3.0mm (12in)

y = 1.0

Let's use the expression:

oc = \frac{K}{Y \sqrt{pi * a}}

We already know

K= design

a = length of surface creak

Since we are to find the length of surface creak, we will make "a" subject of the formula in the expression above.

Therefore

a= \frac{1}{pi} * [\frac{k}{y*a}]^2

Substituting figures in the expression above, we have:

= \frac{1}{pi} * [\frac{98.9 MPa \sqrt{m}} {10 * \frac{860MPa}{2}}]^2

= 0.0168 m

= 17mm

Therefore, since the flaw 17mm > 3 mm the critical flow is subject to detection  

3 0
3 years ago
Read 2 more answers
An insulated rigid tank is initially evacuated. A valve is opened, and atmospheric air at 95 kPa and 17 ºC enters the tank until
Darya [45]

Answer:

T2= 406k

Explanation:

The temperature can be defined as the measurement of the intensity of the heat present in the object. Fahrenheit, kelvin and centigrade are the common scale used for measuring Temperature.

Given:

T1=170C

To convert to Kelvin

= 17+273 =290K

T1 = 290K

Pressure (P)= 95KPa

Specific heat ratio = CP/CV= K

WhereK=1.005/0.718

K = 1.4

The final temperature can be calculated using the formula below.

T2 = CP/CV × T1

=. K × T1

T2 = 1.4 × 290

T2= 406k

5 0
3 years ago
Determine the constant speed at which the cable at A must be drawn in by the motor in order to hoist the load 6 m in 1.5s
zlopas [31]

Answer:

4m/s

Explanation:

We know that power supplied by the motor should be equal to the rate at which energy is increased of the mass that is to be hoisted

Mathematically

Power_{motor} } =\frac{Energy }{time}\

We also know that Power = force x velocity      ..................(i)

The force supplied by the motor should be equal to the weight (mg) of the block since we lift the against a force equal to weight of load

=> power = mg x Velocity........(ii)

While hoisting the load at at constant speed only the potential energy of the mass increases

Thus Potential energy = Mass x g x H...................(iii)

where

g = accleration due to gravity (9.81m/s2)

H = Height to which the load is hoisted  

Equating equations (ii) and (iii) we get

m x g x v = \frac{mgh}{t}

thus we get v = H/t

Applying values we get

v = 6/1.5 = 4m/s

5 0
3 years ago
Other questions:
  • Consider a fully developed laminar flow in a circular pipe. The velocity at R/2 (midway between the wall surface and the centerl
    6·1 answer
  • In Florida a curb indicates and area where parking is prohibited
    15·2 answers
  • A seawall with an opening is used to dampen the tidal influence in a coastal area (and limit erosion). The seawall is 2.5 m long
    11·1 answer
  • A dc shunt motor rated at 240 V has a field winding resistance of 120 Ω and an armature resistance of 0.12 Ω. The motor is suppl
    14·1 answer
  • Cryogenic liquid storage. Liquid oxygen is stored in a thin-walled spherical container, 96 cm in diameter, which is further encl
    10·1 answer
  • Im passed due someone help meeeeeee
    7·2 answers
  • How can you do this 5.2.4: Rating?
    5·1 answer
  • Random question, does anyone here use Lego, do not answer unless that is a yes
    15·2 answers
  • Which federal agency issues the model food code?
    7·2 answers
  • An HVAC contracting company sent out three work crews to complete three
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!