Answer:
The thrown rock will strike the ground
earlier than the dropped rock.
Explanation:
<u>Known Data</u>


, it is negative as is directed downward
<u>Time of the dropped Rock</u>
We can use
, to find the total time of fall, so
, then clearing for
.
![t_{D}=\sqrt[2]{\frac{300m}{4.9m/s^{2}}} =\sqrt[2]{61.22s^{2}} =7.82s](https://tex.z-dn.net/?f=t_%7BD%7D%3D%5Csqrt%5B2%5D%7B%5Cfrac%7B300m%7D%7B4.9m%2Fs%5E%7B2%7D%7D%7D%20%3D%5Csqrt%5B2%5D%7B61.22s%5E%7B2%7D%7D%20%3D7.82s)
<u>Time of the Thrown Rock</u>
We can use
, to find the total time of fall, so
, then,
, as it is a second-grade polynomial, we find that its positive root is
Finally, we can find how much earlier does the thrown rock strike the ground, so 
Yes, his velocity will decrease the further he slides.
The ions are in fixed positions.
Explanation:
Ionic solids are poor conductors of electricity because their ions are fixed in position. Their ions are not free to move about. They are fixed in crystal lattices.
- For the conduction of electricity, compounds must possess free mobile electrons and moving ions in solution.
- Ionic compounds are formed by the electrostatic attraction between a metallic and non-metallic ion.
- They actually contain ions but their ions are locked up.
- They are not free to move about.
- Electrical conduction involves ion mobility.
- In molten and aqueous forms, they are able to conduct electricity because their ions are then mobile.
learn more:
Ionic compound brainly.com/question/6071838
#learnwithBrainly
Answer:
F = 0
Explanation:
The magnetic force is described by two expressions
for a moving charge
F = q v x B
for a wire with a current
F = I L xB
bold indicates vectors
let's write this equation in module form
F = I L B sin θ
where the angle is between the direction of the current and the direction of the magnetic field
In this case they indicate that the cable goes from the South wall to the North wall, so this is the direction of the current
The magnetic field of the Earth goes from the south to the north and in this part it is horizontal
Therefore the current and the magnetic field are parallel, the angle between them is zero
sin 0 = 0
consequently the magnetic force is zero
F = 0