Answer:
Group 4A (or IVA) of the periodic table includes the nonmetal carbon (C), the metalloids silicon (Si) and germanium (Ge), the metals tin (Sn) and lead (Pb), and the yet-unnamed artificially-produced element ununquadium (Uuq).
The Group 4A elements have four valence electrons in their highest-energy orbitals (ns2np2). Carbon and silicon can form ionic compounds by gaining four electrons, forming the carbide anion (C4-) and silicide anion (Si4-), but they more frequently form compounds through covalent bonding. Tin and lead can lose either their outermost p electrons to form 2+ charges (Sn2+, the stannous ion, and Pb2+, the plumbous ion) or their outermost s and p electrons to form 4+ charges (Sn4+, the stannic ion, and Pb4+, the plumbic ion).
Carbon (C, Z=6).
Carbon is most familiar as a black solid is graphite, coal, and charcoal, or as the hard, crystalline diamond form. The name is derived from the Latin word for charcoal, carbo. It is found in the Earth's crust at a concentration of 480 ppm, making it the 15th most abundant element. It is found in form of calcium carbonate, CaCO3, in minerals such as limestone, marble, and dolomite (a mixture of calcium and
Explanation:
<em><u>T</u></em><em><u>H</u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>A</u></em><em><u>L</u></em><em><u>L</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>K</u></em><em><u>N</u></em><em><u>O</u></em><em><u>W</u></em>
<u>E</u><u>N</u><u>J</u><u>O</u><u>Y</u><u> </u><u>THE</u><em><u> </u></em><em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em>
Answer:
Work done by the system = 4545 J
Explanation:
The expression for the calculation of work done is shown below as:
Where, P is the pressure
is the change in volume
From the question,
= 45 - 15 L = 30 L
P = 1.5 atm
Also, 1 atmL = 101 J
So,
(negative sign implies work is done by the system)
<u>Work done by the system = 4545 J</u>
Answer: b
Explanation:
By adding heat you are adding more energy
<span>a. Use PV = nRT and solve for n = number of mols O2.
mols NO = grams/molar mass = ?
Using the coefficients in the balanced equation, convert mols O2 to mols NO2. Do the same for mols NO to mols NO2. It is likely that the two values will not be the same which means one is wrong; the correct value in LR (limiting reagent) problems is ALWAYS the smaller value and the reagent producing that value is the LR.
b.
Using the smaller value for mols NO2 from part a, substitute for n in PV = nRT, use the conditions listed in part b, and solve for V in liters. This will give you the theoretical yield (YY)in liters. The actual yield at these same conditions (AY) is 84.8 L.
</span>and % will be 60%.
The answer is a. <span>changes in nucleotides of a DNA molecule that affect the genetic message.</span>