Explanation:
Equation of the reaction:
Br2(l) + Cl2(g) --> 2BrCl(g)
The enthalpy change for this reaction will be equal to twice the standard enthalpy change of formation for bromine monochloride, BrCl.
The standard enthalpy change of formation for a compound,
ΔH°f, is the change in enthalpy when one mole of that compound is formed from its constituent elements in their standard state at a pressure of 1 atm.
This means that the standard enthalpy change of formation will correspond to the change in enthalpy associated with this reaction
1/2Br2(g) + 1/2Cl2(g) → BrCl(g)
Here, ΔH°rxn = ΔH°f
This means that the enthalpy change for this reaction will be twice the value of ΔH°f = 2 moles BrCl
Using Hess' law,
ΔH°f = total energy of reactant - total energy of product
= (1/2 * (+112) + 1/2 * (+121)) - 14.7
= 101.8 kJ/mol
ΔH°rxn = 101.8 kJ/mol.
1) Balanced chemical reaction: Cl₂ + 2NaI → 2NaCl + I₂.
Chlorine and iodine are diatomic molecules.
2) Balanced chemical reaction: 2NH₃ → N₂ + 3H₂.
Nitrogen and hydrogen are diatomic molecules.
3) Balanced chemical reaction: 4Na + O₂ → 2Na₂O.
Sodium in compounds has oxidation number +1 and oxygen -2.
Answer:
Appearance. Pure rock salt is colorless. However, when found underground it is generally not completely pure, so may have yellow, red, gray or brown hues. It is either transparent or translucent and when you shine a light on it, its luster is vitreous, meaning it appears shiny and glassy.
Explanation:
Answer:
Add G and H to determine the atomic mass for helium
Explanation: