1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
2 years ago
11

I need this asap thank you :) plzzzzz When the spring on a mousetrap car is fully unwound, the force acting on the car is _____.

Engineering
1 answer:
Usimov [2.4K]2 years ago
6 0

Answer:  (only friction) the friction lets it keep its speed and not slow down and it creats volocity between the serface of where the mousecar is running and the wheels on the ground

sorry if im wrong i tried my best

You might be interested in
QUESTIONS
tigry1 [53]

the answer is C cause drivers dont always follow the rules

8 0
3 years ago
Block A has a weight of 8 lb. and block B has a weight of 6 lb. They rest on a surface for which the coefficient of kinetic fric
kkurt [141]

Answer:

For block A, a = 9.66 ft/s²

For block B, a = 15 ft/s²

Explanation:

A free body diagram for this force system is attached to this solution

Mass of block A = m₁ = 8 lb

Mass of block B = m₂ = 6 lb

Coefficient of kinetic friction = μ

Normal reaction on the blocks = N

Spring stiffness of the spring btw block A and B = k = 20 lb/ft

Compression of the spring = 0.2 ft

Analysing Block A first

The forces on block A include, the weight, normal reaction, frictional force and the elastic force due to the spring

Sum of forces in the y-direction = 0

So, the weight of the block = Normal reaction of the surface on the block

N = W = 8 lb

Sum of forces in the x-direction = maₓ

(k × x) - (μ × N) = maₓ

m = W/g = 8/32.2 = 0.248 lbm

(20×0.2) - (0.2 × 8) = (0.248) aₓ

aₓ = 9.66 ft/s²

The forces on block B include, the weight, normal reaction, frictional force and the elastic force due to the spring

Sum of forces in the y-direction = 0

So, the weight of the block = Normal reaction of the surface on the block

N = W = 6 lb

Sum of forces in the x-direction = maₓ

(k × x) - (μ × N) = maₓ

m = W/g = 6/32.2 = 0.186 lbm

(20×0.2) - (0.2 × 6) = (0.186) aₓ

aₓ = 15 ft/s²

4 0
3 years ago
A belt drive was designed to transmit the power of P=7.5 kW with the velocity v=10m/s. The tensile load of the tight side is twi
Leviafan [203]

Answer:

F₁ = 1500 N

F₂ = 750 N

F_{e} = 500 N

Explanation:

Given :

Power transmission, P = 7.5 kW

                                      = 7.5 x 1000 W

                                      = 7500 W

Belt velocity, V = 10 m/s

F₁ = 2 F₂

Now we know from power transmission equation

P = ( F₁ - F₂ ) x V

7500 = ( F₁ - F₂ ) x 10

750 =  F₁ - F₂

750 = 2 F₂ - F₂      ( ∵F₁ = 2 F₂ )

∴F₂  = 750 N

Now F₁ = 2 F₂

        F₁ = 2 x F₂

        F₁ = 2 x 750

        F₁ = 1500 N   ,   this is the maximum force.

Therefore we know,

F_{max} = 3 x F_{e}

where F_{e} is centrifugal force

 F_{e} = F_{max} / 3

                          = 1500 / 3

                         = 500 N

8 0
3 years ago
A hemispherical shell with an external diameter of 500 mm and a thickness of 20 mm is going to be made by casting, located entir
Olenka [21]

Solution :

Given :

External diameter of the hemispherical shell, D = 500 mm

Thickness, t = 20 mm

Internal diameter, d = D - 2t

                                 = 500 - 2(20)

                                 = 460 mm

So, internal radius, r = 230 mm

                                 = 0.23 m

Density of molten metal, ρ = $7.2 \ g/cm^3$

                                                  = $7200 \ kg/m^3$

The height of pouring cavity above parting surface is h = 300 mm

                                                                                                  = 0.3 m

So, the metallostatic thrust on the upper mold at the end of casting is :

$F=\rho g A h$

Area, A $=2 \pi r^2$

            $=2 \pi (0.23)^2$

            $=0.3324 \ m^2$

$F=\rho g A h$

   $=7200 \times 9.81 \times 0.3324 \times 0.3$

     = 7043.42 N

3 0
3 years ago
A 12-ft circular steel rod with a diameter of 1.5-in is in tension due to a pulling force of 70-lb. Calculate the stress in the
padilas [110]

Answer:

The stress in the rod is 39.11 psi.

Explanation:

The stress due to a pulling force is obtained dividing the pulling force by the the area of the cross section of the rod. The respective area for a cylinder is:

A=\pi*D^2/4

Replacing the diameter the area results:

A= 17.76 in^2

Therefore the the stress results:

σ = 70/17.76 lb/in^2 = 39.11 lb/in^2= 39.11 psi

5 0
3 years ago
Other questions:
  • 1. Why is outside air mixed with return air?​
    6·1 answer
  • Some engineers have developed a device that provides lighting to rural areas with no access to grid electricity. The device is i
    13·1 answer
  • What is something that a robot or computer program might do that requires a decision, or conditional statement?
    9·1 answer
  • List three reasons for surfacing metals.
    8·2 answers
  • i need jacket for my daughter who will be going on a girls scouts camping trip it cannot be bulky because she is limited to one
    8·2 answers
  • Q#3:(A)Supose we extend the circular flow mode to add imports and export copy the circular flow digram onto a sheet paper and th
    15·1 answer
  • Give five examples of
    14·1 answer
  • If the 2007 recession affected the green building materials market less seriously than other parts of the construction market, t
    12·2 answers
  • According to mcclelland human motivation theory, individuals primarily motivated by achievement performance to work in teams
    11·1 answer
  • A +7.5% grade meets a horizontal grade on a section of a rural mountainous highway. If the length of the crest vertical curve fo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!