Answer:
11.714 kW
Explanation:
Here is the complete question
A loaded ore car has a mass of 950 kg and rolls on rails with negligible friction. It starts from rest and is pulled up a mine shaft by a cable connected to a winch. The shaft is inclined at 34.0∘ above the horizontal. The car accelerates uniformly to a speed of 2.25 m/s in 10.5 s and then continues at constant speed. What power must the winch motor provide when the car is moving at constant speed?
Solution
Since the loaded ore car moves along the mine shaft at an angle of θ = 34° to the horizontal, if F is the force exerted on the cable, then the net force on the laoded ore car is F - mgsinθ = ma where mgsinθ = component of the car's weight along the incline, m = mass of loaded ore car = 950 kg and a = acceleration
F = m(a + gsinθ)
When the car is moving at constant speed, a = 0
So F = m(a + gsinθ) = F = 950(0 + 9.8sin34) = 5206.1 N
Since it continues at a constant speed of v = 2.25 m/s, the power of the winch motor is P = Fv = 5206.1 N × 2.25 m/s = 11713.7 W = 11.714 kW
The answer to this question to A. The other choices are positive.
The energy stored in motion is called kinetic energy.
<span>The repelling of the support magnet decreases friction. is the answer you're looking for . :)
hope i helped - beanz</span>
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.