Given Information:
Power = P = 100 Watts
Voltage = V = 220 Volts
Required Information:
a) Current = I = ?
b) Resistance = R = ?
Answer:
a) Current = I = 0.4545 A
b) Resistance = R = 484 Ω
Explanation:
According to the Ohm’s law, the power dissipated in the light bulb is given by

Where V is the voltage across the light bulb, I is the current flowing through the light bulb and P is the power dissipated in the light bulb.
Re-arranging the above equation for current I yields,

Therefore, 0.4545 A current is flowing through the light bulb.
According to the Ohm’s law, the voltage across the light bulb is given by

Where V is the voltage across the light bulb, I is the current flowing through the light bulb and R is the resistance of the light bulb.
Re-arranging the above equation for resistance R yields,

Therefore, the resistance of the bulb is 484 Ω
Answer:
Options d and e
Explanation:
The pendulum which will be set in motion are those which their natural frequency is equal to the frequency of oscillation of the beam.
We can get the length of the pendulums likely to oscillate with the formula;

where g=9.8m/s
ω= 2rad/s to 4rad/sec
when ω= 2rad/sec

L = 2.45m
when ω= 4rad/sec

L = 9.8/16
L=0.6125m
L is between 0.6125m and 2.45m.
This means only pendulum lengths in this range will oscillate.Therefore pendulums with length 0.8m and 1.2m will be strongly set in motion.
Have a great day ahead
Answer:
Stable atom
Explanation:
A stable atom is one that has a balanced nuclear inter-particle force reaction as such the binding energy of a stable atom is sufficient to permanently keep the nucleus as one unit. Examples of a stable atom are the atoms of monoisotopic elements such as fluorine, sodium, iodine, gold, aluminium, and cobalt.
In a stable atom the expected number of proton, neutron, and electron are present while in an unstable atom or radioactive atom, there are more than the expected number of neutrons or protons, such that the internal energy of the nucleus is excessive and more than the binding energy, which can lead to radioactive decay.
The best position for the person would be outside, under a clear sky, standing up. He should do it sometime between sunset and sunrise, from a day before until a day after the moment of Full Moon.