The correct answer is option 3. A real gas behaves least like an ideal gas under the conditions of high temperature and low pressure. At this temperature and pressure, the molecules are close to each other and collisions or interactions are very likely to happen which is not an ideal gas.
Answer:
1. 3.70 g Na₂CO₃·10H₂O
2. 50.0 mL of the first solution
Explanation:
1. Prepare the solution
(a) Calculate the molar mass of Na₂CO₃·10H₂O

The molar mass of Na₂CO₃·10H₂O is 286.15 g/mol.
(b) Calculate the moles of Na₂CO₃·10H₂O

(c) Calculate the mass of Na₂CO₃·10H₂O

2. Dilute the solution
We can use the dilution formula to calculate the volume needed.
V₁c₁ = V₂c₂
Data:
V₁ = ?; c₁ = 0.0500 mol·L⁻¹
V₂ = 100 mL; c₂ = 0.0250 mol·L⁻¹
Calculation:

Answer:

Explanation:
= Concentration of stock solution
= Concentration of solution
= Volume of stock solution = 19 mL
= Volume of solution = 0.31 L= 310 mL
We have the relation


The concentration of the diluted solution will be 0.613 times the concentration of the stock solution.
The answer for the question above is A. the gravitational pull of the moon on the water near the coast. The sun and and the moon are responsible for the rising and falling of the ocean tides. The gravitational pull of the moon and the sun makes the water in the oceans bulge, causing a continuous change between high and low tide.
True some explanations are not always based on empirical evidence