1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kazeer [188]
1 year ago
14

What is the magnitude of the electric field at the dot in the figure?

Physics
1 answer:
Zielflug [23.3K]1 year ago
8 0

The magnitude of the electric field at the dot is :  10⁴ v/m

Given that there are three equipotential lines with equal spacing,we will apply the the relationship between P.D and electric field

<h3>Determine the magnitude of the electric field at the dot </h3>

change in voltage  = E .d

100 - 0 = E * ( 1 * 10⁻² m ) ----- ( 1 )

From equation ( 1 )

The magnitude of E = 100 v / ( 1 * 10⁻² m )

                                 = 10⁴ v/m

Hence we can conclude that The magnitude of the electric field at the dot is :  10⁴ v/m

Learn more about electric field : brainly.com/question/14372859

You might be interested in
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
A 7 ft tall person is walking away from a 20 ft tall lamppost at a rate of 5 ft/sec. Assume the scenario can be modeled with rig
aleksandr82 [10.1K]

Answer:

The rate of change of the shadow length of a person is 2.692 ft/s

Solution:

As per the question:

Height of a person, H = 20 ft

Height of a person, h = 7 ft

Rate = 5 ft/s

Now,

From Fig.1:

b = person's distance from the lamp post

a = shadow length

Also, from the similarity of the triangles, we can write:

\frac{a + b}{20} = \frac{a}{7}

a = \frac{7}{13}b

Differentiating the above eqn w.r.t t:

\frac{da}{dt} = \frac{7}{13}.\frac{db}{dt}

Now, we know that:

Rate = \frac{db}{dt} = 5\ ft/s

Thus

\frac{da}{dt} = \frac{7}{13}.\times 5 = 2.692\ ft/s

5 0
2 years ago
Why is the likelihood of amajor earthquake along the san andreas fault so worrisome??
Softa [21]
Because a lot of people live along the fault line and there would be lots of death and much property damage.
5 0
2 years ago
A cannon ball is fired directly upward with a velocity of 160 m/s. How long does it take to fall back to the ground? s How fast
Andrej [43]
To answer this problem, we will use the equations of motions.

Part (a):
For the ball to start falling back to the ground, it has to reach its highest position where its final velocity will be zero.
The equation that we will use here is:
v = u + at where
v is the final velocity = 0 m/sec
u is the initial velocity = 160 m/sec
a is acceleration due to gravity = -9.8 m/sec^2 (the negative sign is because the ball is moving upwards, thus, its moving against gravity)
t is the time that we want to find.
Substitute in the equation to get the time as follows:
v = u + at
0 = 160 - 9.8t
9.8t = 160
t = 160/9.8 = 16.3265 sec
Therefore, the ball would take 16.3265 seconds before it starts falling back to the ground

Part (b):
First, we will get the total distance traveled by the ball as follows:
s = 0.5 (u+v)*t
s = 0.5(160+0)*16.3265
s = 1306.12 meters
The equation that we will use to solve this part is:
v^2 = u^2 + 2as where
v is the final velocity we want to calculate
u is the initial velocity of falling = 0 m/sec (ball starting falling when it reached the highest position, So, the final velocity in part a became the initial velocity here)
a is acceleration due to gravity = 9.8 m/sec^2 (positive as ball is moving downwards)
s is the distance covered = 1306.12 meters
Substitute in the above equation to get the final velocity as follows:
v^2 = u^2 + 2as
v^2 = (0)^2 + 2(9.8)(1306.12)
v^2 = 25599.952 m^2/sec^2
v = 159.99985 m/sec
Therefore, the velocity of the ball would be 159.99985 m/sec when it hits the ground.
6 0
3 years ago
QUESTION 3
Alisiya [41]

The force of frictions is opposed to relative motion.

The acceleration of the crate is approximately <u>2.937 m/s²</u>.

Reason:

The given parameters are;

The mass of the wood, m = 100 kg

The force which can move the wood, F = 588 N

Wood on wood static friction, \mu_s = 0.5

Wood on wood kinetic friction, \mu_k = 0.3

Solution;

The force of friction, F_f, acting when the crate is moving is given as

follows;

F_f = m × g × \mu_k

Where;

g = The acceleration due to gravity ≈ 9.81 m/s²

Therefore, we have;

F_f = 100 × 9.81 × 0.3 = 294.3

The force of friction, F_f = 294.3 N

The force with which the crate moves, F = 588 - 294.3 = 293.7

The force with which the crate moves, F = 293.7 N

Force = Mass, m × Acceleration, a

a = \dfrac{F}{m}

Therefore;

a = \dfrac{293.7 \ N}{100 \ kg} = 2.937

The acceleration of the crate, a ≈ <u>2.937 m/s²</u>.

Learn more about friction here:

brainly.com/question/94428

8 0
2 years ago
Other questions:
  • What type of sound is produced when string vibrates rapidly?
    10·1 answer
  • If element x has 94 protons how many electrons does it have​
    13·2 answers
  • Why does wave height increase in shallow water??
    5·1 answer
  • What happens when exhale
    15·2 answers
  • In which direction does the electric field point at a position directly north of a positive charge?
    6·2 answers
  • Two students pushes on a box in the same direction , and one pushes In The opposite direction.what is the net force on the box i
    11·1 answer
  • Science fiction movies that include explosion sound effects for battles in space are not scientifically correct. Why is this?
    15·1 answer
  • Why is area called scalar quantity​
    15·1 answer
  • What changes occurred when Zoroastrianism became a state religion during the Sasanian Empire?
    11·1 answer
  • A wave created by shaking a rope up and down is called a.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!