a = ( V2 - V1)/( t2 - t1)
3.2 = ( 23.5m/s - 15.2m/s)/(t - 0)
3.2m/s = 8.3/t
t(3.2) = 8.3
t = 8.3/3.2
t = 2.59 seconds
Answer:
83.6°
Explanation:
For the ray to be totally internally reflected, at the boundary, the angle of refraction is 90. Using the law of refraction where
n₁sinθ₁ = n₂sinθ₂ where n₁ = refractive index of prism = 1.5, θ₁ = critical angle in prism, n₂ = refractive index of air = 1 and θ₂ = refractive angle = 90°.
So, substituting these values into the equation,
n₁sinθ₁ = n₂sinθ₂
1.5 × sinθ₁ = 1 × sin90
1.5 × sinθ₁ = 1
sinθ₁ = 1/1.5
sinθ₁ = 0.6667
θ₁ = sin*(0.6667)
θ₁ = 41.8°
So, for total internal reflection, an incidence angle of 41.8° is required. So, a full convergence angle of 2 × 41.8° = 83.6° is required for the whole bundle of rays.
The object is not accelerating. I think I got this question right
Answer:
Explanation:
Since the block is at rest in an elevated position, we can assume that it only has potential energy.
U=mgh is the formula for potential energy where U=potential energy, m= mass, g=acceleration due to gravity, and h=height.
Plug in known variables....
U=4kg*9.8m/s^2*20m
U=784 joules of potential energy or letter A.