Answer:
The answer is I=70,513kgm^2
Explanation:
Here we will use the rotational mechanics equation T=Ia, where T is the Torque, I is the Moment of Inertia and a is the angular acceleration.
When we speak about Torque it´s basically a Tangencial Force applied over a cylindrical or circular edge. It causes a rotation. In this case, we will have that T=Ft*r, where Ft is the Tangencial Forge and r is the radius
Now we will find the Moment of Inertia this way:
->
Replacing we get that I is:
Then
In case you need to find extra information, keep in mind the Moment of Inertia for a solid cylindrical wheel is:
Answer:
8.0 N
Explanation:
Force: This can be defined as the mass of a body and its acceleration. The S.I unit of Force is Newton (N).
Mathematically, Fore is expressed as
F = ma ........................... equation 1
Where F = force, m = mass, a = acceleration.
and
I = mΔv
Δv = I/m ............................ Equation 2
Where I = impulse, m = mass, Δv = change in velocity
Given: I = 6.0 Newton-seconds, m = 0.1 kilogram.
Substituting into equation 2
Δv = 6.0/0.1
Δv = 60 m/s.
But
a = Δv/t
where t = time = 0.75 seconds.
a = 60/0.75
a = 80 m/s²
Substitute the values of a and m into equation 1.
F = 0.1(80)
F = 8.0 N.
Thus the average force produced = 8.0 N
The Law of the Conservation of Energy is stating that the total mechanical energy is always conserved or in simpler terms, not used or saved.
Is this a true and false question?