Answer:
the amount of energy needed is 1.8 x 10¹⁷ J.
Explanation:
Given;
mass of the object, m₀ = 1 kg
velocity of the object, v = 0.866 c
By physics convection, c is the speed of light = 3 x 10⁸ m/s
The energy needed is calculated as follows;
E = Mc²
As the object approaches the speed of light, the change in the mass of the object is given by Einstein's relativity formula;

The energy required is calculated as;
E = 2 x (3 x 10⁸)²
E = 1.8 x 10¹⁷ J
Therefore, the amount of energy needed is 1.8 x 10¹⁷ J.
Answer:
F = - 1,598 10⁻³ N
Explanation:
Electic strength is given by Coulomb's law
F = k q₁ q₂ / r²
Where k is the Coulomb constant that is worth 8.99 10⁸ N m²/C², q₁ and q₂ are the charges and r is the distance that separates the electric charges
In this case the charge of the two spheres is the same and of a different sign since when you remove the charge of a sphere that was initially neutral, it is left with that charge removed but of the opposite sign
q₁ = q₂ = 2.50 10¹³ electrons = 2.50 10¹³ 1.6 10⁻¹⁹
q₀ = 4.0 10⁻⁶ C
Let's calculate
F = - 8.99 10⁸ (4.0 10⁻⁶)² / 0.30²
F = - 1,598 10⁻³ N
Answer:Stirring.
Explanation:Stirring a solute into a solvent speeds up the rate of dissolving because it helps distribute the solute particles throughout the solvent. For example, when you add sugar to iced tea and then stir the tea, the sugar will dissolve faster.
Answer:
a) 0.658 seconds
b) 0.96 inches
Explanation:

Time taken by the ball to reach the highest point is 0.14 seconds

The highest point reached by the snowball above its release point is 0.315 ft
Total height the snowball will fall is 4+0.315 = 4.315 ft

The snowball will reach the bank at 0.14+0.518 = 0.658 seconds after it has been thrown


The snowball goes 0.5-0.42 = 0.08 ft = 0.96 inches