Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
Before answering this question, first we have to understand the effect of ratio of surface area to volume on the rate of diffusion.
The rate of diffusion for a body having larger surface area as compared to the ratio of surface area to volume will be more than a body having less surface area. Mathematically it can written as-
V∝ R [ where v is the rate of diffusion and r is the ratio of surface area to volume]
As per the question,the ratio of surface area to volume for a sphere is given 
The surface area to volume ratio for right circular cylinder is given 
Hence, it is obvious that the ratio is more for right circular cylinder.As the rate diffusion is directly proportional to the surface area to volume ratio,hence rate of diffusion will be more for right circular cylinder.
Hence the correct option is B. The rate of diffusion would be faster for the right cylinder.
Answer:
El avión recorrió 45 km en los 180 s.
Explanation:
La relación entre velocidad, distancia y tiempo se da de la siguiente manera;

Por lo cual los parámetros dados son los siguientes;
Velocidad = 900 km/h = 250 m / s
Tiempo = 180 s
Estamos obligados a calcular la distancia recorrida
De la ecuación para la velocidad dada arriba, tenemos;
Distancia recorrida = Velocidad pf viaje × Tiempo de viaje
Distancia recorrida = 900 km/h × 180 s = 900
Distancia recorrida = 900 km/h × 1 h/60 min × 1 min/60 s × 180 s = 45 km
Por lo tanto, el avión viajó 45 km en 180 s.
Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion.Displacement<span> is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.
</span>To calculate displacement<span>, simply draw a vector from your starting point to your final position and solve for the length of this line. If your starting and ending position are the same, like your circular 5K route, then your </span>displacement<span> is 0. In physics, </span>displacement<span> is represented by Δs.
For me to solve this I would need to know the time, but I can give you a handy displacement calculator I used that helped me.
https://www.easycalculation.com/physics/classical-physics/constant-acc-displacement.php
Hope I helped.
</span>