1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
5

A 2-mm-diameter electrical wire is insulated by a 2-mm-thick rubberized sheath (k = 0.13 W/m ? K), and the wire/sheath interface

is characterized by a thermal contact resistance of R c = 3 X 10-4 m2 ? K/W. The convection heat transfer coefficient at the outer surface of the sheath is 10 W/m2 ? K, and the temperature of the ambient air is 20

Engineering
1 answer:
Svet_ta [14]3 years ago
5 0

Question

A 2-mm-diameter electrical wire is insulated by a 2-mm-thick rubberized sheath (k = 0.13 W/m.K), and the wire/sheath interface is characterized by a thermal contact resistance of Rtc = 3E-4m².K/W. The convection heat transfer coefficient at the outer surface of the sheath is 10 W/m²K, and the temperature of the ambient air is 20°C.

If the temperature of the insulation may not exceed 50°C, what is the maximum allowable electrical power that may be dissipated per unit length of the conductor? What is the critical radius of the insulation?

Answer:

a. 4.52W/m

b. 13mm

Explanation:

Given

Diameter of electrical wire = 2mm

Wire Thickness = 2-mm

Thermal Conductivity of Rubberized sheath (k = 0.13 W/m.K)

Thermal contact resistance = 3E-4m².K/W

Convection heat transfer coefficient at the outer surface of the sheath = 10 W/m²K,

Temperature of the ambient air = 20°C.

Maximum Allowable Sheet Temperature = 50°C.

From the thermal circuit (See attachment), we my write

E'q = q' = (Tin,i - T∞)/(R'cond + R'conv)

= (Tin,i - T∞)/(Ln (r in,o / r in,i)/2πk + (1/(2πr in,o h)))

Where r in,i = D/2

= 2mm/2

= 1 mm

= 0.001m

r in,o = r in,i + t = 0.003m

T in, i = Tmax = 50°C

Hence

q' = (50 - 20)/[(Ln (0.003/0.001)/(2π * 0.13) + 1/(2π * 0.003 * 10)]

= 30/[(Ln3/0.26π) + 1/0.06π)]

= 30/[(1.34) + 5.30)]

= 30/6.64

= 4.52W/m

The critical radius is unaffected by the constant resistance.

Hence

Critical Radius = k/h

= 0.13/10

= 0.013m

= 13mm

You might be interested in
Question is written in following attached screenshot.
Juli2301 [7.4K]

Answer:

jjj jk to the day of the day of the day of the day of the day

Explanation:

hey hi I am a br of August and I am not able to join the meeting and will

7 0
2 years ago
2.14 (a) Using series/parallel resistance reductions, find the equivalent resistance between terminals A and B in the circuit of
olasank [31]

Answer:

There is no attachment

5 0
3 years ago
A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and gauge pressure of 300 kPa. The gas is h
Sergio [31]

Answer:

the final temperature is 77.1 °C

Explanation:

Given the data in the question;

Initial temperature; T₁ = 27°C = ( 27 + 273)K = 300 K

Initial absolute pressure P₁ = 300 kPa = ( 300 + 101.325 )kPa = 401.325 kPa

Final absolute pressure P₂ = 367 kPa = ( 367 + 101.325 )kPa = 468.325 kPa

Now, to calculate the final temperature, we use the ideal gas equation;

P₁V/T₁ = P₂V/T₂

but it is mentioned that the rigid tank is closed,

so the volume is the same both before and after.

Change in volume = 0

hence;

P₁/T₁ = P₂/T₂

we substitute

401.325 kPa / 300 K = 468.325 kPa / T₂

T₂ × 401.325 kPa  = 300 K × 468.325 kPa

T₂ = [ 300 K × 468.325 kPa ] / 401.325 kPa

T₂ = 140497.5 K / 401.325

T₂ =  350.08 K

T₂ = ( 350.08 - 273 ) °C

T₂ = 77.1 °C

Therefore, the final temperature is 77.1 °C

3 0
3 years ago
Question 2: (a) In your own words, clearly distinguish and differentiate between Ethics in Engineering and Ethics in Computing (
zlopas [31]

Engineering ethics is not without abstraction, but in contrast with computing, it is animated by a robust and active movement concerned with the seamless identification of ethics with practice.

<h3 /><h3>What is engineering?</h3>

This is a branch of science and technology concerned with the design, building, and use of engines, machines, and structures that uses scientific principles.

Comparing ethics in engineering and ethics in computing:

  • Engineering ethics are a set of rules and guidelines. While computing ethics deals with procedures, values and practices.
  • In engineering ethics, engineers must adhere to these rules as a moral obligation to their profession While in computing ethics, the ethics govern the process of consuming computer technology.
  • Following these ethics for the two professions will NOT cause damage, but disobeying them causes damage.

Some practical examples in the computing field:

  • Avoid using the computer to harm other people such as creating a bomb or destroying other people's work.
  • Users also should not use a computer for stealing activities like breaking into a bank or company.
  • Make sure a copy of the software had been paid for by the users before it is used.

Some practical examples in the engineering field:

  • Integrity for oneself.
  • Respect for one another.
  • Pursuit of excellence and accountability.

Hence, Engineering ethics is the field of system of moral principles that apply to the practice of engineering and following them is important to the profession.

Read more about <em>engineering</em> here:

brainly.com/question/17169621

#SPJ1

7 0
2 years ago
Water at 20 °C is flowing with velocity of 0.5 m/s between two parallel flat plates placed 1 cm apart. Determine the distances f
Basile [38]

Answer:

The distance from the entrance at which the boundary layers meet is 0.516m

The distance from the entrance at which the thermal boundary layers meet is 1.89m

Explanation:

For explanation, look at the attached file

3 0
3 years ago
Other questions:
  • The density of oxygen contained in a tank is 2.0 kg/m3 when the temperature is 25 °C. Determine the gage pressure of the gas if
    12·1 answer
  • 12. The small space above the piston in which fuel is burned is called the
    10·1 answer
  • Assignment 1: Structural Design of Rectangular Reinforced Concrete Beams for Bending
    6·1 answer
  • A six-lane multilane highway (three lanes in each direction) has a peak-hour factor of 0.90, 11-ft lanes with a 4-ft right-side
    11·1 answer
  • If a ball is dropped from a height its velocity will increase until it hits the ground, assuming that aerodynamic drag due to th
    6·1 answer
  • "12 cents per kilowatt-hour (kwh), a 114 MPGe (combined) Nissan Leaf costs 90 cents per 25 miles,"
    10·1 answer
  • Why is communication one of the most important aspects of an engineer’s job?
    7·2 answers
  • How can statistical analysis of a dataset inform a design process
    11·1 answer
  • I NEED HELP!!!Situation: A client has hired Jose, a materials engineer, to develop a package for an item he has begun to market.
    15·1 answer
  • Whose responsibility is it to provide direction on correct ladder usage?<br> select the best option.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!