Answer:
The answer is
<h2>11.25 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 45 g
volume = 4 mL
Substitute the values into the above formula and solve for the density
We have

We have the final answer as
<h3>11.25 g/mL</h3>
Hope this helps you
Answer:
passively diffuses down its concentration gradient through the endothelial cell plasma membrane out of the cell and then passiveley diffuses through the plasma membrane into the cytoplasm of the smooth muscle cell, where it acts to decrease contraction.
Explanation:
Hello,
At first, we must consider that
and
,
passively diffuses through membranes. As it is produced by an enzyme and accumulates in the endothelial cell cytosol,
passively diffuses down its concentration gradient through the endothelial cell plasma membrane out of the cell and then passiveley diffuses through the plasma membrane into the cytoplasm of the smooth muscle cell, where it acts to decrease contraction.
Best regards
Answer:
2.067 L ≅ 2.07 L.
Explanation:
- The balanced equation for the mentioned reaction is:
<em>CS₂(g) + 3O₂(g) → CO₂(g) + 2SO₂(g),</em>
It is clear that 1.0 mole of CS₂ react with 3.0 mole of O₂ to produce 1.0 mole of CO₂ and 2.0 moles of SO₂.
- At STP, 3.6 L of H₂ reacts with (?? L) of oxygen gas:
It is known that at STP: every 1.0 mol of any gas occupies 22.4 L.
<u><em>using cross multiplication:</em></u>
1.0 mol of O₂ represents → 22.4 L.
??? mol of O₂ represents → 3.1 L.
∴ 3.1 L of O₂ represents = (1.0 mol)(3.1 L)/(22.4 L) = 0.1384 mol.
- To find the no. of moles of SO₂ produced from 3.1 liters (0.1384 mol) of hydrogen:
<u><em>Using cross multiplication:</em></u>
3.0 mol of O₂ produce → 2.0 mol of SO₂, from stichiometry.
0.1384 mol of O₂ produce → ??? mol of SO₂.
∴ The no. of moles of SO₂ = (2.0 mol)(0.1384 mol)/(3.0 mol) = 0.09227 mol.
- Again, using cross multiplication:
1.0 mol of SO₂ represents → 22.4 L, at STP.
0.09227 mol of SO₂ represents → ??? L.
∴ The no. of liters of SO₂ will be produced = (0.09227 mol)(22.4 L)/(1.0 mol) = 2.067 L ≅ 2.07 L.
Neutralization
is the probable answer, which I don't know how to explain, but I know that's the answer because I learned about it a few years ago and I'm pretty smart. =]
1. The third option is the least soluble in water because it is the chain with the most number of hydrocarbons. Next is the second option while the first one is the most soluble.
2. Statements 1 and 2 are true. The third option is not true all the time because it depends on the structure of the compound.