To calculate the velocity of the sound wave, we use this formula:
V = 331 + [0.6*T],
Where V is the velocity and T represents temperature.
When the temperature is 36 degree Celsius, we have
V = 331 + [0.6 * 36]
V = 331 + 21.6 = 352.6
Therefore, V = 352.6 m/s.
Answer:
The electric potential at the surface of a charged conductor<u> is always such that the potential is zero at all points inside the conductor.</u>
Explanation:
Each point on the surface of a balanced charged conductor has the same electrical potential.
The surface on any charged conductor in electrostatic equilibrium is an equipotential surface. Since the electric field is equal to zero inside the conductor, the electric potential at any point inside and on the surface is equivalent to its value.
Answer:
600km/h as u are on a platform moving at the speed of 600 km/h where u are moving in relativity to the plane it's self.
Answer:
2.11eV
Explanation:
We know that speed of light is it's wavelength times frequency.

Planck's constant is 
The energy gap is calculated by multyplying the light's frequency by planck's constant:

Hence, the energy gap is 2.11eV