Missing question: "What is the spring's constant?"
Solution:
The object of mass m=6.89 kg exerts a force on the spring equal to its weight:

When the object is attached to the spring, the displacement of the spring with respect to its equilibrium position is

And by using Hook's law, we can find the constant of the spring:
Answer:
North east
Explanation:
The distance travelled by a plane from one point to another is the shortest distance between the two points. This distance travelled is usually a straight line path from point 1 to point 2.
Since the plane ends up 220 km farther east and 100.0 km farther north, the direction of flight for the plane is in the North-East direction.
Let x represent the distance travelled by the plane. Hence:
x² = 100² + 220²
x² = 58400
x = 241.66 km
Answer:
vb = 22.13 m/s
So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.
Explanation:
In order to find the speed of roller coaster at Point B, we will use the law of conservation of Energy. In this situation, the law of conservation of energy states that:
K.E at A + P.E at A = K.E at B + P.E at B
(1/2)mvₐ² + mghₐ = (1/2)m(vb)² + mg(hb)
(1/2)vₙ² + ghₐ = (1/2)(vb)² + g(hb)
where,
vₙ = velocity of roller coaster at point a = 0 m/s
hₙ = height of roller coaster at point a = 25 m
g = 9.8 m/s²
vb = velocity of roller coaster at point B = ?
hb = Height of Point B = 0 m (since, point is the reference point)
Therefore,
(1/2)(0 m/s)² + (9.8 m/s²)(25 m) = (1/2)(vb)² + (9.8 m/s²)(0 m)
245 m²/s² * 2 = vb²
vb = √(490 m²/s²)
<u>vb = 22.13 m/s</u>
<u>So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.</u>
Answer:
The mass of the other worker is 45 kg
Explanation:
The given parameters are;
The gravitational potential energy of one construction worker = The gravitational potential energy of the other construction worker
The mass of the lighter construction worker, m₁ = 90 kg
The height level of the lighter construction worker's location = h₁
The height level of the other construction worker's location = h₂ = 2·h₁
The gravitational potential energy, P.E., is given as follows;
P.E. = m·g·h
Where;
m = The mass of the object at height
g = The acceleration due to gravity
h = The height at which is located
Let P.E.₁ represent the gravitational potential energy of one construction worker and let P.E.₂ represent the gravitational potential energy of the other construction worker
We have;
P.E.₁ = P.E.₂
Therefore;
m₁·g·h₁ = m₂·g·h₂
h₂ = 2·h₁
We have;
m₁·g·h₁ = m₂·g·2·h₁
m₁ = 2·m₂
90 kg = 2 × m₂
m₂ = (90 kg)/2 = 45 kg
The mass of the other construction worker is 45 kg.