False only some eukaryotes have cell wall like plants, fungi, and some bacteria.
Answer:
Explanation:
1 ) Magnetic field due to a circular coil carrying current
= μ₀I / 2r
I is current , r is radius of the wire , μ₀ = 4π x 10⁻⁷
= 4π x 10⁻⁷ x 15 / (2 x 3.5 x 10⁻²)
= 26.9 x 10⁻⁵ T
2 )
Negative z direction .
The direction of magnetic field due to a circular coil having current is known
with the help of screw rule or right hand thumb rule.
3 )
If we decrease the radius the magnetic field will:__increase _____.
A. Increase.
Magnetic field due to a circular coil carrying current
B = μ₀I / 2 r
Here r is radius of the coil . If radius decreases magnetic field increases.
So magnetic field will increase.
Answer:
6.0 m below the top of the cliff
Explanation:
We can find the velocity at which the ball dropped from the cliff reaches the ground by using the SUVAT equation

where
u = 0 (it starts from rest)
g = 9.8 m/s^2 (acceleration of gravity, we assume downward as positive direction)
h = 24 m is the distance covered
Solving for h,

So the ball thrown upward is launched with this initial velocity:
u = 21.7 m/s
From now on, we take instead upward as positive direction.
The vertical position of the ball dropped from the cliff at time t is

While the vertical position of the ball thrown upward is

The two balls meet when

So the two balls meet after 1.11 s, when the position of the ball dropped from the cliff is

So the distance below the top of the cliff is

Answer: Entropy is basically a thermodynamic quantity that tells the randomness of a system or as said in the question tells us a measure of the disorder of the system. The second law of thermodynamics states that a closed system has entropy which may remain constant
Answer;
All the above
Explanation;
The element carbon is the most important chemical constituent of many organic matter, ranging from fossil fuels to complex molecules such as DNA and RNA, that control genetic reproduction in organisms.
This element is found stored in major sinks found on the earth;
- as organic molecules in living and dead organisms found in the biosphere;
- as the gas carbon dioxide in the atmosphere;
- as organic matter in soils;
- in the lithosphere as fossil fuels and sedimentary rock deposits in the oceans as dissolved atmospheric carbon dioxide and
- as calcium carbonate shells in marine organisms.