Answer:
Part(a): the capacitance is 0.013 nF.
Part(b): the radius of the inner sphere is 3.1 cm.
Part(c): the electric field just outside the surface of inner sphere is
.
Explanation:
We know that if 'a' and 'b' are the inner and outer radii of the shell respectively, 'Q' is the total charge contains by the capacitor subjected to a potential difference of 'V' and '
' be the permittivity of free space, then the capacitance (C) of the spherical shell can be written as

Part(a):
Given, charge contained by the capacitor Q = 3.00 nC and potential to which it is subjected to is V = 230V.
So the capacitance (C) of the shell is

Part(b):
Given the inner radius of the outer shell b = 4.3 cm = 0.043 m. Therefore, from equation (1), rearranging the terms,

Part(c):
If we apply Gauss' law of electrostatics, then

The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is
<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J
That is,
• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point
• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium
so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.
By the work-energy theorem,
<em>W</em> = ∆<em>K</em> = <em>K</em>
where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So
<em>W</em> = 1/2 <em>mv</em> ²
where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get
<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s
Hey There,
Question: "<span>A student gives a brief push to a block of dry ice. A moment later, the block moves across a very smooth surface at a constant speed. When drawing the free body diagram for the block of dry ice moving at a constant speed, the forces that should be included are: (select all that apply)"
Answer: C. Force Of Friction
B. Force
If This Helps May I Have Brainliest?</span>
The new velocity after 4 s is 40 m/s
The height of the spaceship above the ground after 5 seconds is 1,127.5 m
The given parameters for the first question;
- initial velocity of the car, u = 76 m/s
- acceleration of the car, a = - 9 m/s²
The new velocity after 4 s is calculated as;
v = u + at
v = 76 + (-9)(4)
v = 76 - 36
v = 40 m/s
(5)
The given parameters;
- height above the ground, h = 500 m
- velocity of spaceship, u = 150 m/s
The height of the spaceship above the ground after 5 seconds is calculated as;

Learn more here: brainly.com/question/24527971